PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic study of CO2 reaction with CaO by a modified random pore model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a modified random pore model was developed to study the kinetics of the carbonation reaction of CaO. Pore size distributions of the CaO pellets were measured by nitrogen adsorption and mercury porosimetry methods. The experiments were carried out in a thermogravimeter at different isothermal temperatures and CO2 partial pressures. A fractional concentration dependency function showed the best accuracy for predicting the intrinsic rate of reaction. The activation energy was determined as 11 kcal/mole between 550–700°C. The effect of product layer formation was also taken into account by using the variable product layer diffusivity. Also, the model was successfully predicted the natural lime carbonation reaction data extracted from the literature.
Rocznik
Strony
93--98
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Hakim Sabzevari University, Chemical Engineering Department, Sabzevar, 9617976487, Iran
  • Amirkabir University of Technology, Chemical Engineering Department, Petrochemical Centre of Excellency, Tehran, 15875-4413, Iran
Bibliografia
  • 1. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van Der Linden, P.J., Dai, X., Maskell, K. & Johnson, C., Climate change 2001: the scientific basis, Cambridge University Press, UK, 2001.
  • 2. Dean, C., Blamey, J., Florin, N., Al-Jeboori & M., Fennell, P. (2011). The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chem. Eng. Res. Des. 89, 836–855. DOI: 10.1016/j. cherd.2010.10.013.
  • 3. Abanades, J.C., Grasa, G., Alonso, M., Rodriguez, N., Anthony, E.J. & Romeo, L.M. (2007). Cost structure of a postcombustion CO2 capture system using CaO. Environ. Sci. Technol. 41, 5523–5527. DOI: 10.1021/es070099a.
  • 4. Abanades, J.C., Anthony, E.J., Wang, J. & Oakey, J.E. (2005). Fluidized bed combustion systems integrating CO2 capture with CaO. Environ. Sci. Technol. 39, 2861–2866. DOI: 10.1021/es0496221.
  • 5. Fang, F., Li, Z.S. & Cai, N.S. (2009). Continuous CO2 capture from flue gases using a dual fluidized bed reactor with calcium-based sorbent. Ind. Eng. Chem. Res. 48, 11140–11147. DOI: 10.1021/ie901128r.
  • 6. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., Tejima, K. (1999). A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem. Eng. Res. Des. 77, 62–68. DOI: 10.1205/026387699525882.
  • 7. Bhatia, S.K. & Perlmutter, D.D. (1983). Effect of the product layer on the kinetics of the CO2-lime reaction, AIChE J. 29, 79–86. DOI: 10.1002/aic.690290111.
  • 8. Khoshandam, B., Kumar, R.V. & Allahgholi, L. (2010) Mathematical modeling of CO2 removal using carbonation with CaO: The grain model. Kor. J. Chem. Eng. 27, 766–776. DOI: 10.1007/s11814-010-0119-5.
  • 9. Sun, P., Grace, J.R., Lim, C.J., Anthony, E.J. (2008). Determination of intrinsic rate constants of the CaO–CO2 reaction. Chem. Eng. Sci. 63, 47–56. DOI: 10.1016/j.ces.2007.08.055.
  • 10. Sun, P., Grace, J.R., Lim, C.J. & Anthony, E.J. (2008). A discrete-pore-size-distribution-based gas–solid model and its application to the CaO-CO2 reaction. Chem. Eng. Sci. 63, 57–70. DOI: 10.1016/j.ces.2007.08.055.
  • 11. Nitsch, W. (1962). Über die Druckabhängigkeit der CaCO3-Bildung aus dem Oxyd. Z. Elektrochem 66, 703–708. DOI: 10.1002/bbpc.19620660821.
  • 12. Dennis, J.S. & Hayhurst, A.N. (1987). The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem. Eng. Sci. 42, 2361–2372. DOI: 10.1016/0009-2509(87)80110-0.
  • 13. Grasa, G., Murillo, R., Alonso, M., Abanades, J.C. (2009). Application of the random pore model to the carbonation cyclic reaction. AIChE J. 55, 1246–1255. DOI: 10.1002/aic.11746.
  • 14. Bhatia, S.K. & Perlmutter, D.D. (1981). A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J. 27, 247–254. DOI: 10.1002/aic.690270211.
  • 15. Wakao, N. & Smith, J.M. (1962). Diffusion in catalyst pellets. Chem. Eng. Sci. 17, 825–834. DOI: 10.1016/0009-2509(62)87015-8.
  • 16. Slattery, J.C. & Bird, R.B. (1958). Calculation of the diffusion coefficient of dilute gases and of the self-diffusion coefficient of dense gases. AIChE J. 4, 137–142. DOI: 10.1002/aic.690040205.
  • 17. Smith, J.M., Chemical engineering kinetics, McGraw-Hill, 1981.
  • 18. Barker, R. (1973). The reversibility of the reaction CaCO3, CaO+CO2 J. Appl. Chem. Biotechnol. 23, 733–742. DOI: 10.1002/jctb.5020231005.
  • 19. Kyaw, K., Kanamori, M., Matsuda, H., Hasatani, M. (1996). Study of Carbonation Reactions of Ca-Mg Oxides for High Temperature Energy Storage and Heat Transformation. J. Chem. Eng. Jpn. 29, 112–118. DOI: 10.1252/jcej.29.112.
  • 20. Mess, D., Sarofi m, A.F. & Longwell, J.P. (1999). Product layer diffusion during the reaction of calcium oxide with carbon dioxide. Energ Fuels 13, 999–1005. DOI: 10.1021/ef980266f.
  • 21. Stendardo, S. & Foscolo, P.U. (2009). Carbon dioxide capture with dolomite: A model for gas–solid reaction within the grains of a particulate sorbent. Chem. Eng. Sci. 64, 2343–2352. DOI: 10.1016/j.ces.2009.02.009.
  • 22. Anderson, T.F. (1969). Self-diffusion of carbon and oxygen in calcite by isotope exchange with carbon dioxide. J.Geophys. Res. 74, 3918–3932. DOI: 10.1029/JB074i015p03918.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc4a918e-5baa-4b95-aa2e-e56494ee1dec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.