PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Correlation Studies of Dimensional Accuracy with Temperature Changes of Selected Elements of a Machine Tool in the Machining Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the characteristics of temperature changes of selected components of the machine tool and the temperature of the machining coolant in relation to the selected dimensions of finished parts, such as the AGB gear cover. The tests were carried out on the basis of serial production on the FMS line in a plant producing components for the aviation industry. As part of the research, the machine tool was modernized to the extent that it was possible to register temperatures in real-time. Temperature changes were compared with the dimensions of the machined part in search of dependencies. Correlation calculations between temperature and dimensional data were made with the use of a statistical process control program. Dimensional data were obtained from CMM machines used daily to measure parts from series production.
Twórcy
  • Faculty of Mechanical Engineering and Aviation, Rzeszów University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aviation, Rzeszów University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Bryan J. International status of thermal error research. CIRP Annals. 1990. 39(2): 645-656.
  • 2. Weck M., et al. Reduction and compensation of thermal errors in machine tools. CIRP Annals, 1995. 44(2): 589-598.
  • 3. Zapłata J. Modelowanie odkształceń cieplnych obrabiarki precyzyjnej metodą mes. Modelowanie inżynierskie. 2017; 63:114-122. [In Polish]
  • 4. Wąsik M., Kolka A., Śliwka J. Symulacja odkształceń termicznych przedmiotu obrabianego na maszynie cnc przy wysokodokładnej obróbce szybkościowej. Modelowanie Inżynierskie. 2018; 66:87-94. [In Polish]
  • 5. Li Y., Zhao W., Lan S., Ni J., Wu W., Lu B. A review on spindle thermal error compensation in machine tools. International Journal of Machine Tools and Manufacture 2015; 95:20-38.
  • 6. Gurauskisa D., Kilikeviciusb A., Borodinasb S., Kasparaitis A. Analysis of geometric and thermal errors of linear encoder for real-time compensation. Sensors and Actuators A. 2019;296:145–154.
  • 7. Pajor M., Zapłata J. Zastosowanie metod sztucznej inteligencji do kompensacji odkształceń cieplnych śrub pociągowych obrabiarek CNC. Modelowanie Inżynierskie. 51:70-76. [In Polish]
  • 8. Józwik J. Experimental methods of error identification in CNC machine tool operation. Wydawnictwo Politechniki Lubelskiej; 2018.
  • 9. Delbressine F., Florussen G.H.J., Schijvenaars L.A., Schellekens P.H.J.. Modelling thermomechanical behaviour of multi-axis machine tools. Precision Engineering. 2005;30:47-53.
  • 10. Groos L., Held C., Keller F., Wendt K. Mapping and compensation of geometric errors of a machine tool at different constant ambient temperatures. Precision Engineering. 2020;63:10-17.
  • 11. Ibaraki S., Hong C.-F. Thermal test for error maps of rotary axes by R-test. Key Engineering Materials. 2012;523-524: 809–814.
  • 12. Zverev I.A., Eun I.-U., Chung W.J., Lee C.M. Thermal modelling of high-speed spindle units. KSMEInt.J. 2003;17(5):668–678.
  • 13. Li H., Shin Y. Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model. International Journal of Machine Tools and Manufacture. 2004;44:347–364.
  • 14. Li H., Shin Y. Integrated dynamic thermo-mechanical modelling of high speed spindles Part 2: Solution Procedure and Validation. Journal of Manufacturing Science and Engineering 2004;126:159–168.
  • 15. Mares M., Horejš O., Havlík L. Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece. Precision Engineering. 2020;66:21-30.
  • 16. Feng W., Li Z., Gu Q., Yang J. Thermally induced positioning error modelling and compensation based on thermal characteristic analysis. International Journal of Machine Tools and Manufacture. 2015 ;93:26-36.
  • 17. Yung-Cheng W., Ming-che K., Chung-Ping C. Investigation on the spindle thermal displacement and its compensation of precision cutter grinders. Measurement 2011;44 :1183-1187
  • 18. ISO 230-3, 2007, Test Code for Machine Tools – Part 3: Determination of Thermal Effects, Genf, Schwitzerland
  • 19. ISO 10791-10, 2007, Test Conditions for Machining Centres – Part 10: Evaluation of Thermal Distortion, Genf, Schwitzerland.
  • 20. ISO 13041-8, 2004, Test Conditions for Numerically Controlled Turning. Machines and Turning Centres – Part 8: Evaluation of Thermal Distortions, Genf, Schwitzerland.
  • 21. Brechec C., Hirsch P., Weck M.. Compensation of thermo-elastic machine tool deformation based on control internal data. CIRP Annals Manufacturing Technology. 2004;53(1):299-304.
  • 22. Kostal P, Velisek K. Flexible manufacturing system. Engineering and Technology. 2011;53 :723-727
  • 23. Hexagon Manufacturing Inteligence. Part of Hexagon m&h Radio-Wave Touch Probe V01.00REV01.00. Releasedate: 2016-01-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc499df2-027a-4b44-9659-f00a97d12fe8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.