Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to significant improvement of thermal performance and other properties of nanofluids, this group of liquids is in high demand. According to the literature, the effect of nanoparticles on boiling heat transfer enhancement or degradation is not the same among different investigations. In the present article, the pseudo-potential multiphase lattice Boltzmann method is used to simulate nucleate pool boiling with two different fluids: a pure liquid and a nanofluid. The current results indicate that the contact angle is the same for both the fluid and nanofluid when the vapor bubble detachment occurs. Also, bubble departure diameter is greater in the base liquid while bubble release frequency is higher in the nanofluid. In brief, the present results demonstrate that using a nanofluid instead of its base fluid will increase the boiling heat transfer coefficient.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
811--825
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
autor
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
autor
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
Bibliografia
- 1. Abu-Nada E., 2009, Effects of variable viscosity and thermal conductivity of Al2O3-water nano- fluid on heat transfer enhancement in natural convection, International Journal of Heat and Fluid Flow, 30, 4, 679-90
- 2. Ahn H.S. , Kim H., Jo H., Kang S., Chang W., Kim M.H., 2010, Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, International Journal of Multiphase Flow, 36, 5, 375-84
- 3. Barber J., Brutin D., Tadrist L., 2011, A review on boiling heat transfer enhancement with nanofluids, Nanoscale Research Letters, 6, 1, 1-16
- 4. Bejan A., 2013, Convection Heat Transfer, John Wiley & Sons 5. Brinkman H., 1952, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20, 4, 571
- 6. Buick J., Greated C., 2000, Gravity in a lattice Boltzmann model, Physical Review E, 61, 5, 5307
- 7. Cheng L., 2009, Nanofluid heat transfer technologies, Recent Patents on Engineering, 3, 1, 1-7
- 8. Cheng L., Bandarra F., Enio P., Thome J.R., 2008, Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges, Journal of Nanoscience and Nanotechnology, 8, 7, 3315-3332
- 9. Cheng M., Hua J., Lou J., 2010, Simulation of bubble-bubble interaction using a lattice Boltzmann method, Computers and Fluids, 39, 2, 260-70
- 10. Das S. K., Putra N., Roetzel W., 2003, Pool boiling characteristics of nano-fluids, International Journal of Heat and Mass Transfer, 46, 5, 851-862
- 11. Dong Z., Li W., Song Y., 2010, A numerical investigation of bubble growth on and departure from a superheated wall by lattice Boltzmann method, International Journal of Heat and Mass Transfer, 53, 21, 4908-4916
- 12. Fritz W., 1935, Maximum volume of vapor bubbles, Physik Zeitschr, 36, 11, 379-84
- 13. Gong S., Cheng P., 2012, A lattice Boltzmann method for simulation of liquid-vapor phase- -change heat transfer, International Journal of Heat and Mass Transfer, 55, 17, 4923-7
- 14. Gong S., Cheng P., 2013, Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling, International Journal of Heat and Mass Transfer, 64, 122-132
- 15. Guo Z., Zheng C., Shi B., 2002, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E, 65, 4, 046308
- 16. Hamilton R., Crosser O., 1962, Thermal conductivity of heterogeneous two-component systems, Industrial and Engineering Chemistry Fundamentals, 1, 3, 187-191
- 17. Hazi G., Markus A., 2009, On the bubble departure diameter and release frequency based on numerical simulation results, International Journal of Heat and Mass Transfer, 52, 5, 1472-1480
- 18. Hirt C.W., Nichols B.D., 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 39, 1, 201-225
- 19. Huminic G., Huminic A., 2011, Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids, Experimental Thermal and Fluid Science, 35, 3, 550-557
- 20. Inamuro T., Ogata T., Ogino F., 2004, Numerical simulation of bubble flows by the lattice Boltzmann method, Future Generation Computer Systems, 20, 6, 959-964
- 21. Jain P.K., Tentner A., 2009, A lattice Boltzmann framework to simulate boiling water reactor core hydrodynamics, Computers and Mathematics with Applications, 58, 5, 975-986
- 22. Kim H., Kim M., 2009, Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids, Heat and Mass Transfer, 45, 7, 991-998
- 23. Kim S., Bang I. C., Buongiorno J., Hu L., 2006, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Applied Physics Letters, 89, 15, 153107
- 24. Kim S., Bang I.C., Buongiorno J., Hu L., 2007, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, 50, 19, 4105-4116
- 25. Kim S.J., 2007, Pool Boiling Heat Transfer Characteristics of Nanofluids, Massachusetts Institute of Technology
- 26. Kole M., Dey T., 2012, Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids, Applied Thermal Engineering, 37, 112-119
- 27. Kupershtokh A., 2004, New method of incorporating a body force term into the lattice Boltzmann equation, Proceedings of 5th International EHD Workshop, University of Poitiers, Poitiers, France
- 28. Kwark S.M., Kumar R., Moreno G., Yoo J., You S.M., 2010, Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer, 53, 5, 972-981
- 29. Lee J., Mudawar I., 2007, Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, International Journal of Heat and Mass Transfer, 50, 3, 452-463
- 30. Liu X., Cheng P., 2013, Lattice Boltzmann simulation of steady laminar film condensation on a vertical hydrophilic subcooled flat plate, International Journal of Heat and Mass Transfer, 62, 507-514
- 31. Liu M., Yu Z., Wang T., Wang J., Fan L.-S., 2010, A modified pseudopotential for a lattice Boltzmann simulation of bubbly flow, Chemical Engineering Science, 65, 20, 5615-5623
- 32. Mukherjee A., Dhir V., 2004, Study of lateral merger of vapor bubbles during nucleate pool boiling, Journal of Heat Transfer, 126, 6, 1023-1039
- 33. Osher S., Sethian J.A., 1988, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79, 1, 12-49
- 34. Park K.-J., Jung D., Shim S.E., 2009, Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes, International Journal of Multiphase Flow, 35, 6, 525-532
- 35. Phan H.T., Caney N., Marty P., Colasson S., Gavillet J., 2010, Surface coating with nanofluids: the effects on pool boiling heat transfer, Nanoscale and Microscale Thermophysical Engineering, 14, 4, 229-244
- 36. Phan H.T., Caney N., Marty P., Colasson S., Gavillet J., 2010, A model to predict the effect of contact angle on the bubble departure diameter during heterogeneous boiling, International Communications in Heat and Mass Transfer, 37, 8, 964-969
- 37. Raveshi M.R., Keshavarz A., Mojarrad M.S., Amiri S., 2013, Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids, Experimental Thermal and Fluid Science, 44, 805-814
- 38. Rothman D.H., Keller J.M., 1988, Immiscible cellular-automaton fluids, Journal of Statistical Physics, 52, 3/4, 1119-1127
- 39. Shan X., Chen H., 1993, Lattice Boltzmann model for simulating flows with multiple phases and components, Physical Review E, 47, 3, 1815
- 40. Shan X., Doolen G., 1995, Multicomponent lattice-Boltzmann model with interparticle interaction, Journal of Statistical Physics, 81, 1/2, 379-393
- 41. Sukop M.C., Thorne D.T., 2007, Lattice Boltzmann Modeling: an Introduction for Geoscientists and Engineers, Springer
- 42. Sun T., Li W., Yang S., 2013, Numerical simulation of bubble growth and departure during flow boiling period by lattice Boltzmann method, International Journal of Heat and Fluid Flow, 44, 120-129
- 43. Swift M.R., Orlandini E., Osborn W., Yeomans J., 1996, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Physical Review E, 54, 5, 5041
- 44. Taylor R.A., Phelan P.E., 2009, Pool boiling of nanofluids: comprehensive review of existing data and limited new data, International Journal of Heat and Mass Transfer, 52, 23, 5339-5347
- 45. Vafaei S., Wen D., 2010, Effect of gold nanoparticles on the dynamics of gas bubbles, Langmuir, 26, 10, 6902-6907
- 46. Wang X.-Q., Mujumdar A.S., 2007, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46, 1, 1-19
- 47. Yang X.F., Liu Z.H., 2011, Pool boiling heat transfer of functionalized nanofluid under subatmospheric pressures, International Journal of Thermal Sciences, 50, 12, 2402-2412
- 48. Yang Z., Dinh T.-N., Nourgaliev R., Sehgal B., 2001, Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method, International Journal of Heat and Mass Transfer, 44, 1, 195-206
- 49. You S., Kim J., Kim K., 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters, 83, 16, 3374-3376
- 50. Yuan P., Schaefer L., 2006, Equations of state in a lattice Boltzmann model, Physics of Fluids, 18, 4, 042101
- 51. Zeinali Heris S., 2011, Experimental investigation of pool boiling characteristics of lowconcentrated CuO/ethylene glycol-water nanofluids, International Communications in Heat and Mass Transfer, 38, 10, 1470-1473
- 52. Zhang R., Chen H., 2003, Lattice Boltzmann method for simulations of liquid-vapor thermal flows, Physical Review E, 67, 6, 066711
- 53. Zheng H., Shu C., Chew Y.-T., 2006, A lattice Boltzmann model for multiphase flows with large density ratio, Journal of Computational Physics, 218, 1, 353-371
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc3ffbdb-608a-4300-a408-fcc5607053a1