PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of workpiece speed on microhardness and residual stresses in vacuum-carburised 20MnCr5 steel using the single-piece flow method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To determine the impact of selected conditions of abrasive treatment on the value and distribution of microhardness and residual stresses in layers carburised by a continuous single-piece flow method. Design/methodology/approach: Reference pieces were low pressure carburised at 920°C and then heat-treated in a 4D Quench heat treatment chamber at a pressure of 7 bar and tempered at 190ºC for 3 hours. In the next stage, samples were ground at various vw piece speeds, introducing grinding fluid into the cutting zone using the WET spraying method or using the MQL method at a minimum flow rate. The distribution of microhardness and residual stresses generated in the technological outer layer of the pieces following heat and chemical treatment and the grinding process was measured. Findings: Results of the tests indicated that the vw piece speed and method used to supply cooling and lubricating fluid to the grinding zone had an impact on selected parameters of the technological outer layer of flat samples made of 20MnCr5 steel. The process of grinding using an electrocorundum grinding wheel results in a deterioration of residual stresses in the material. For each of the three analysed vw piece speeds, reduced changes in material microhardness prior to cutting occur in the outer layer of samples ground using GF supplied at a minimum flow rate using the MQL method. Research limitations/implications: Environmental considerations and having to conform to increasingly stringent regulations related to environmental protection and employee safety motivate researchers and businesses to entirely eliminate or reduce the use of grinding fluids in the grinding process and, therefore, to optimise grinding technology. Practical implications: Modern manufacturing industry requires the grinding process, which follows heat and chemical treatment, to be performed with the highest possible efficiency. However, retaining high parameters of the technological outer layer in comparison to the sample material following vacuum carburisation (before grinding) is extremely difficult. An optimised configuration of parameters of the grinding process and method of supplying grinding fluids enables meeting the current and future high expectations of the industry in this regard. Originality/value: The tests have enabled us to determine the impact of the applied vw workpiece speed and method of supplying grinding fluid on microhardness and residual stresses. Generally speaking, grinding with an electrocorundum grinding wheel results in a deterioration of residual stresses. For both methods of supplying GF (WET and MQL), the distribution of microhardness in the material of the samples ground with the highest workpiece speed (18.0 m/min) indicated no significant differences with regard to the distribution of microhardness in the material of the samples following heat and chemical treatment.
Rocznik
Strony
66--75
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego St 1/15, 90-537 Lodz, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego St 1/15, 90-537 Lodz, Poland
autor
  • Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego St 1/15, 90-537 Lodz, Poland
autor
  • Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego St 1/15, 90-537 Lodz, Poland
Bibliografia
  • [1] B.W. Kruszyński, R. Wójcik, Residual stress in grinding, Journal of Materials Processing Technology 109/3 (2001) 254-257. DOI: https://doi.org/10.1016/S0924-0136(00)00807-4
  • [2] W.B. Rowe, Principles of modern grinding technology, Second Edition, Elsevier, Oxford, UK, 2014.
  • [3] I.D. Marinescu, M.P. Hitchiner, E. Uhlmann, W.B. Rowe, I. Inasaki, Handbook of machining with grinding wheels, Second edition, CRC Press Taylor & Francis Group, Boca Raton, 2016.
  • [4] S. Malkin, C. Guo, Grinding technology: theory and application of machining with abrasives, Second edition, Industrial Press Inc., New York, 2008.
  • [5] W. Grzesik, B. Kruszyński, A. Ruszaj, Surface integrity of machined surfaces, in: J.P. Davim (ed.), Surface integrity in machining, Springer-Verlag, London, 2010.
  • [6] M. Korecki, E. Wołowiec-Korecka, M. Sut, A. Brewka, W. Stachurski, P. Zgórniak, Precision case hardening by low pressure carburizing (LPC) for high volume production, HTM Journal of Heat Treatment and Materials 72/3 (2017) 175-183. DOI: https://doi.org/10.3139/105.110325
  • [7] P. Kula, K. Dybowski, E. Wołowiec, R. Pietrasik, “Boost-diffusion” vacuum carburising – Process optimisation, Vacuum 99 (2014) 175-179. DOI: https://doi.org/10.1016/j.vacuum.2013.05.021
  • [8] R. Atraszkiewicz, B. Januszewicz, Ł. Kaczmarek, W. Stachurski, K. Dybowski, A. Rzepkowski, High pressure gas quenching: Distortion analysis in gears after heat treatment, Materials Science and Engineering A 558 (2012) 550-557. DOI: https://doi.org/10.1016/j.msea.2012.08.047
  • [9] K. Dybowski, J. Sawicki, P. Kula, B. Januszewicz, R. Atraszkiewicz, S. Lipa, The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing, Archives of Metallurgy and Materials 61/2B (2016) 1057-1062. DOI: https://doi.org/10.1515/amm-2016-0178
  • [10] J. Sawicki, B. Kruszyński, R. Wójcik, The influence of grinding conditions on the distribution of residual stress in the surface layer of 17CrNi6-6 steel after carburizing, Advances in Science and Technology- Research Journal 11/2 (2017) 17-22. DOI: https://doi.org/10.12913/22998624/67671
  • [11] W. Stachurski, K. Krupanek, B. Januszewicz, R. Rosik, R. Wójcik, An effect of grinding on microhardness and residual stress in 20MnCr5 following single-piece flow low-pressure carburizing, Journal of Machine Engineering 18/4 (2018) 73-85. DOI: https://doi.org/10.5604/01.3001.0012.7634
  • [12] S. Lipa, J. Sawicki, K. Dybowski, R. Pietrasik, B. Januszewicz, The effect of non-metallic inclusions formed as a result of deoxidation on the fatigue strength of 15CrNi6 and 16MnCr5 steel, Archives of Metallurgy and Materials 63/3 (2018) 1345-1350. DOI: https://doi.org/10.24425/123810
  • [13] J. Sawicki, M. Górecki, Ł. Kaczmarek, Z. Gawroński, K. Dybowski, R. Pietrasik, W. Pawlak, Increasing the durability of pressure dies by modern surface treatment methods, Chiang Mai Journal of Science 40/5 (2013) 886-897.
  • [14] S. Lipa, J. Sawicki, E. Wołowiec-Korecka, K. Dybowski, P. Kula, Method of determining the strain hardening of carburized elements in Ansys environ-ment, Solid State Phenomena 240 (2015) 74-80. DOI: https://doi.org/10.4028/www.scientific.net/SSP.240.74
  • [15] W.B. Rowe, Towards high productivity in precision grinding, Inventions 3/2 (2018) 24. DOI: https://doi.org/10.3390/inventions3020024
  • [16] W. Stachurski, J. Sawicki, B. Januszewicz, R. Rosik, The influence of the depth of grinding on the condition of the surface layer of 20MnCr5 steel ground with the minimum quantity lubrication (MQL) method, Materials 15/4 (2022) 1336. DOI: https://doi.org/10.3390/ma15041336
  • [17] B. Jamuła, Temperature measurement analysis in the cutting zone during surface grinding, Journal of Measurements in Engineering 9/2 (2021) 106-116. DOI: https://doi.org/10.21595/jme.2021.21894
  • [18] P. Zgórniak, E. Wołowiec-Korecka, B. Januszewicz, M. Sikora, R. Rosik, The influence of grinding wheel type on microhardness and residual stresses in vacuum-carburised 20MnCr5 steel using the single-piece flow method, IOP Conference Series: Materials Science and Engineering 743 (2020) 012049. DOI: https://doi.org/10.1088/1757-899X/743/1/012049
  • [19] W. Stachurski, J. Sawicki, R. Wójcik, K. Nadolny, Influence of application of hybrid MQL-CCA method of applying coolant during hob cutter sharpening on cutting blade surface condition, Journal of Cleaner Production 171 (2018) 892-910. DOI: https://doi.org/10.1016/j.jclepro.2017.10.059
  • [20] W. Stachurski, J. Sawicki, K. Krupanek, K. Nadolny, Numerical analysis of coolant flow in the grinding zone, International Journal of Advanced Manufacturing Technology 104 (2019) 1999-2012. DOI: https://doi.org/10.1007/s00170-019-03966-x
  • [21] C. Li, Q. Zhang, S. Wang, D. Jia, D. Zhang, Y. Zhang, X. Zhang, Useful fluid flow and flow rate in grinding: an experimental verification, International Journal of Advanced Manufacturing Technology 81 (2015) 785- 794. DOI: https://doi.org/10.1007/s00170-015-7230-z
  • [22] K.K. Gajrani, P.S. Suvin, S.V. Kailas, M.R. Sankar, Hard machining performance of indigenously developed green cutting fluid using flood cooling and minimum quantity cutting fluid, Journal of Cleaner Production 206 (2019) 108-123. DOI: https://doi.org/10.1016/j.jclepro.2018.09.178
  • [23] D.L. Moraes, M.V. Garcia, J.C. Lopes, F.S.F. Ribeiro, L.E.A. Sanchez, C.R. Foschini, H.J. Mello, P.R. Aguiar, E.C. Bianchi, Performance of SAE 52100 steel grinding using MQL technique with pure and diluted oil, International Journal of Advanced Manufacturing Technology 105 (2019) 4211-4223. DOI: https://doi.org/10.1007/s00170-019-04582-5
  • [24] N. Nakatsuka, Y. Hirai, A. Kusakabe, Y. Yao, H. Sasahara, Effect of coolant supplied through grinding wheel on residual stress of grinding surface, Advanced Materials Research 1017 (2014) 33-37. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1017.33
  • [25] R. L. de Paiva, R de Souza Ruzzi, R.B. da Silva, An Approach to Reduce Thermal Damages on Grinding of Bearing Steel by Controlling Cutting Fluid Temperature, Metals 11/10 (2021) 1660. DOI: https://doi.org/10.3390/met11101660
  • [26] Z. Said, M. Gupta M., H. Hegab, N. Arora, A.M. Khan, M. Jamil, E. Bellos, A comprehensive review on minimum quantity lubrication (MQL) in machining process using nano-cutting fluids, International Journal of Advanced Manufacturing Technology 105 (2019) 2057-2086. DOI: https://doi.org/10.1007/s00170-019- 04382-x
  • [27] B. Sen, M. Mia, G.M. Krolczyk, U.K. Mandal, S.P. Mondal, Eco friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing, International Journal of Precision Engineering and Manufacturing - Green Technology 8 (2021) 249-280. DOI: https://doi.org/10.1007/s40684-019-00158-6
  • [28] N. Sultana, N.R. Dhar, A critical review on the progress of MQL in machining hardened steels, Advances in Materials and Processing Technologies (2022) (published online). DOI: https://doi.org/10.1080/2374068X.2022.2036041
  • [29] V. Singh, A. Kumar Sharma, R. Kumar Sahu, J. Kumar Katiyar, State of the art on sustainable manufacturing using mono/hybrid nano-cutting fluids with minimum quantity lubrication, Materials and Manufacturing Processes 37/6 (2022) 603-639. DOI: https://doi.org/10.1080/10426914.2022.2032147
  • [30] W. Czapiewski, Methods of minimalization of coolant flow rate in the grinding processes – the Review, Journal of Mechanical and Energy Engineering 1(41)/2 (2017) 117-122.
  • [31] V.S. Sharma, G. Singh, K. Sørby, A review on minimum quantity lubrication for machining processes, Materials and Manufacturing Processes 30/8 (2015) 935-953. DOI: https://doi.org/10.1080/10426914.2014.994759
  • [32] W. Stachurski, J. Sawicki, K. Krupanek, K. Nadolny, Application of numerical simulation to determine ability of air used in MQL method to clean grinding wheel active surface during sharpening of hob cutters, International Journal of Precision Engineering and Manufacturing - Green Technology 8 (2021) 1095-1112. DOI: https://doi.org/10.1007/s40684-020-00239-x
  • [33] S.K. Iyappan, A. Ghosh, Small quantity lubrication assisted end milling of aluminium using sunflower oil, International Journal of Precision Engineering and Manufacturing - Green Technology 7 (2020) 337-345. DOI: https://doi.org/10.1007/s40684-019-00081-w
  • [34] J.C. Lopes, M.V. Garcia, M. Valentim, R.L. Javaroni, F.S.F. Ribeiro, L.E.A. Sanchez, H.J. Mello, P.R. Aguiar, E.C. Bianchi, Grinding performance using variants of the MQL technique: MQL with cooled air and MQL simultaneous to the wheel cleaning jet, International Journal of Advanced Manufacturing Technology 105 (2019) 4429-4442. DOI: https://doi.org/10.1007/s00170-019-04574-5
  • [35] S. Pervaiz, S. Anwar, I. Qureshi, N. Ahmed, Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques, International Journal of Precision Engineering and Manufacturing - Green Technology 6 (2019) 133-145. DOI: https://doi.org/10.1007/s40684- 019-00033-4
  • [36] N.E. Arun kumar, A. Suresh Babu, M. Subramanian, N. Arunkumar, Influence of MQL on performance evaluation of EN19 steel under centreless grinding, Materials and Manufacturing Processes 37/14 (2022) 1618-1629. DOI: https://doi.org/10.1080/10426914.2022.2032142
  • [37] R. Dębkowski, M. Gołąbczak, M. Skowron, M. Urbaniak, Lifetime increase method of cutting ability of grinding wheels in the process of magnesium alloy grinding, Materialwissenschaft und Werkstofftechnik 50/11 (2019) 1343-1352. DOI: https://doi.org/10.1002/mawe.201900092
  • [38] M. Gołąbczak, R. Święcik, A. Gołąbczak, D. Kaczmarek, R. Dębkowski, B. Tomczyk, Electro-discharge methods of shaping the cutting ability of superhard grinding wheels, Materials 14/22 (2021) 6773. DOI: https://doi.org/10.3390/ma14226773
  • [39] E. Wołowiec-Korecka, M. Korecki, W. Stachurski, P. Zgórniak, J. Sawicki, A. Brewka, M. Sut, M. Bazel, System of single-piece flow case hardening for high volume production, Archives of Materials Science and Engineering 79/1 (2016) 37-44. DOI: https://doi.org/10.5604/18972764.1227661
  • [40] E. Wołowiec-Korecka, W. Stachurski, P. Zgórniak, M. Korecki, A. Brewka, P. Byczkowska, The influence of quenching temperature on distortions during the individual quenching method, Archives of Materials Science and Engineering 105/2 (2020) 80-85. DOI: https://doi.org/10.5604/01.3001.0014.5764
  • [41] W. Stachurski, P. Zgórniak, J. Sawicki, M. Przybysz, Hardening-related deformations of gear wheels after vacuum carburising and quenching in a 4D quenching chamber, Advances in Science and Technology Research Journal 11/1 (2017) 237-245. DOI: https://doi.org/10.12913/22998624/67673
  • [42] M. Korecki, E. Wołowiec-Korecka, D. Glenn, Single- Piece, High-Volume, Low-Distortion Case Hardening of Gears, Thermal Processing September/October (2016) 32-39. Access in: 17.03.2022, Available online: https://thermalprocessing.com/single-piece-high-volume-and-low-distortion-case-hardening-of-gears/
  • [43] J. Sawicki, K. Krupanek, W. Stachurski, V. Buzalski, Algorithm scheme to simulate the distortions during gas quenching in a single-piece flow technology, Coatings 10/7 (2020) 694. DOI: https://doi.org/10.3390/coatings10070694
  • [44] ECOLUBRIC E200L, Safety Data Sheet. Access in: 05.02.2022, Available from: https://en.accu-svenska.se/safety-datasheets
  • [45] ECOLUBRIC® MQL System. Access in: 05.022022, Available from: https://en.accu-svenska.se/mql-system/ecolubric-%C2%AE
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc397821-9877-4ae7-a07e-a62fbc7ad056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.