PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Health Risk Assessment of Heavy Metals on Total Suspended Particles in Semi Urban, Urban, and Industrial Areas of Bandung Metropolitan Area, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Total Suspended Particulates (TSP) in ambient air contain metallic elements and can be inhaled by humans. Inhaled metal elements risk public health with long-term exposure because metallic elements are carcinogenic in the human body. This study aimed to analyze metallic elements and assess their risk to public health in the Bandung area and its surroundings. The metal elements analyzed in this research are Pb, Al, and Mn. Ambient air sampling was carried out in five industrial areas: Bandung Wetan, Buahbatu, Cibeureum, Padalarang, and Cimahi. High Volume Air Sampler (HVAS) is for sampling TSP in ambient air, and X-Ray Fluorescence (XRF) was used to analyze metallic elements. The results of the study showed that the Cimahi location gave the highest TSP level (126.7 g/m3) and the lowest is Padalarang (15.1 μg/m3). The metal elements concentrations, Pb, Al, and Mn were varied widely of 7.1–29.21 ng/m3, 1054.9–1700.1 ng/m3, and 8.91–14.79 ng/m3, respectively. Risk analysis was determined by calculating ADDinhale, Hazard Quotient (HQ), and Hazard Index (HI) to determine whether there is a potential non–carcinogenic effect on public health. Each industrial area gives an HI value > 1.0 and Buahbatu has the highest HI. This study proves that Pb significantly contributes to the increased risk of community exposure to non-carcinogenic effects.
Twórcy
autor
  • Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung 40135, Indonesia
  • Department of Chemistry, Sekolah Tinggi Analis Bakti Asih, Bandung 40192, Indonesia
  • Department of Chemistry, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia
  • Department of Chemistry, Sekolah Tinggi Analis Bakti Asih, Bandung 40192, Indonesia
  • Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung 40135, Indonesia
autor
  • Department of Environmental Engineering, Universitas Tanjungpura, Pontianak 78124, Indonesia
autor
  • Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung 40135, Indonesia
  • Department of Environmental Engineering, Universitas Hasanuddin, Makassar 90245, Indonesia
  • Department of Environmental Engineering, Universitas Pertamina, Jakarta Selatan 12220, Indonesia
  • Department of Building Engineering Education, Universitas Negeri Medan, Medan 20221, Indonesia
  • Department of Environmental Engineering, Universitas Islam Negeri Ar-Raniry, Aceh 23111, Indonesia
  • Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung 40135, Indonesia
Bibliografia
  • 1. Abadin H., Ashizawa A., Stevens Y.W., Llados F., Diamond G., Sage G., Citra M., Quinones A., Bosch S.J., Swarts S.G. 2007. Toxicological Profile for Lead. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US). PMID: 24049859.
  • 2. Ankar-Brewoo G.M., Darko G., Abaidoo R.C., Dalsgaard A., Johnson P.N., Ellis W.O., Brimer L. 2020. Health risks of toxic metals (Al, Fe and Pb) in two common street vended foods, fufu and fried-rice, in Kumasi, Ghana. Scientific African, 7, e00289.
  • 3. Arditsoglou A, Samara C. 2005. Levels of total suspended particulate matter and major trace elements in Kosovo: A source identification and apportionment study. Chemosphere, 59, 669–678.
  • 4. Bari M.A., Kindzierski W.B. 2017. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada. Chemosphere, 173, 160–171.
  • 5. Basha S., Jhala J., Thorat R., Goel S., Trivedi R., Shah K., Menon G., Gaur P., Mody K.H., Jha B. 2010. Assessment of heavy metal content in suspended particulate matter of coastal industrial town, Mithapur, Gujarat, India. Atmospheric Research, 97, 257–265.
  • 6. Buranatrevedh S. 2010. Health risk assessment of workers exposed to metals from an aluminium production plant. Journal of the Medical Association of Thailand, 93(12), 136–141.
  • 7. Chalvatzaki E., Chatoutsidou S.E., Lehtomäki H., Almeida S.M., Eleftheriadis K., Hänninen O., Lazaridis M. 2019. Characterization of human health risks from particulate air pollution in selected European cities. Atmosphere, 10(2), 1–16.
  • 8. Du Y., Chen L., Ding P., Liu L., He Q., Chen B., Duan Y. 2019. Different exposure profile of heavy metal and health risk between residents near a Pb-Zn mine and a Mn mine in Huayuan County, South China. Chemosphere, 216, 352–364.
  • 9. Fang G.C., Zhuang Y.J., Huang W.C. 2018. Seasonal ambient air particulates and metallic elements (Cr, Cu, Zn, Cd, Pb) pollutants dry depositions fluxes predictions and distributions with appropriate models at a farmland site. Atmospheric Research, 210, 58–65.
  • 10. Girsang E. 2008. Relationship of Lead Levels in Ambient Air with Lead in Blood in Medan Inter-City Terminal Transportation Service Employees. Magister. Thesis, Universitas Sumatera Utara, Medan.
  • 11. Gonçalves C., Figueiredo B.R., Alves C.A., Cardoso A.A., da Silva R., Kanzawa S.H., Vicente A.M. 2016. Chemical characterisation of total suspended particulate matter from a remote area in Amazonia. Atmospheric Research, 182, 102–113.
  • 12. Goumenou M., Tsatsakis A. 2019. Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: The source related Hazard Quotient (HQS) and Hazard Index (HIS) and the adversity specific Hazard Index (HIA). Toxicology Reports, 6, 632–636.
  • 13. Hill D.T., Petroni M., Larsen D.A., Bendinskas K., Heffernan K., Atallah-Yunes N., Parsons P.J., Palmer C.D., MacKenzie J.A., Collins M.B., Gump B.B. 2021. Linking metal (Pb, Hg, Cd) industrial air pollution risk to blood metal levels and cardiovascular functioning and structure among children in Syracuse, NY. Environmental Research, 193, 110557.
  • 14. Hou S., Zheng N., Tang L., Ji X., Li Y., Hua X. 2019. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environment International, 128, 430–437.
  • 15. Hu X., Zhang Y., Ding Z., Wang T., Lian H., Sun Y., Wu J. 2012. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, 146–152.
  • 16. Huang Y.N., Dang F., Li M., Zhou D.M., Song Y., Wang J.B. 2020. Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag mine, China. Science of the Total Environment, 698, 134326.
  • 17. Kang C.H., Kim W.H., Ko H.J., Hong S.B. 2009. Asian Dust effects on Total Suspended Particulate (TSP) compositions at Gosan in Jeju Island, Korea. Atmospheric Research, 94, 345–355.
  • 18. Naseri K., Salmani F., Zeinali M., Zeinali T. 2021. Health risk assessment of Cd, Cr, Cu, Ni and Pb in the muscle, liver and gizzard of hen’s marketed in East of Iran. Toxicology Reports, 8, 53–59.
  • 19. Nurmaningsih D.R. 2018. Analisis kualitas udara ambien akibat lalu lintas kendaraan bermotor di Kawasan Coyudan, Surakarta. Jurnal Teknik Lingkungan, 3(2), 46–53.
  • 20. Quiterio S.L., Sousa da Silva C.R., Arbilla G., Escaleira V. 2004. Metals in airborne particulate matter in the industrial district of Santa Cruz, Rio de Janeiro, in an annual period. Atmospheric Environment, 38, 321–331.
  • 21. Rahman A.A., Rusman A.D.P. 2021. Description of ambient air quality and complaints of respiratory problems in the people of Pare Pare City [in Indonesian]. Jurnal Ilmiah Manusia Dan Kesehatan, 4, 351–358.
  • 22. Rita L.D.D., Hamonangan E., Santoso M., Yulinawati H. 2016. Air quality (PM10 dan PM2.5) for completing the enviromental quality index. Ecolab, 10(1), 1–7.
  • 23. Santoso M., Lestiani D.D., Damastuti E., Kurniawati S., Kusmartini I., Atmodjo D.P.D., Sari D.K., Muhtarom T., Permadi D.A., Hopke P.K. 2022. Long term characteristics of atmospheric particulate matter and compositions in Jakarta, Indonesia. Atmospheric Pollution Research, 11(12), 2215–2225.
  • 24. Sari E.N. 2013. Description of terminal ambient air quality in relation to impaired lung function of female permanent traders at Joyoboyo Terminal, Surabaya [in Indonesian]. The Indonesian Journal of Occupational Safety and Health, 2, 90–95.
  • 25. Shah M.H., Shaheen N., Nazir R. 2012. Assessment of the trace elements level in urban atmospheric particulate matter and source apportionment in Islamabad, Pakistan. Atmospheric Pollution Research, 3(1), 39–45.
  • 26. U.S. Department of Health & Human Services. ATSDR: Agency for Toxic Substances and Disease Registry, 2021. Online. Available from: http://www.atsdr.cdc.gov/phs/phs.asp?id=1076&ti d=34 [Accessed 20 November 2022].
  • 27. US EPA. EPA: United States Environmental Protection Agency, 2009. Online. Available from: http://www.epa.gov/sites/production/files/2015- 09/documents/partf_200901_final.pdf [Accessed 20 November 2022].
  • 28. Wulansari A., Sarto S., Saleh Y.D. 2016. Ambient air quality and lung function in elementary school students in Yogyakarta [in Indonesian]. Berita Kedokteran Masyarakat, 32(3), 83–88.
  • 29. Yulaekah, S., Adi, M.S. 2017. Inhaled dust exposure and impaired lung function in limestone industry workers (study in Mrisi Village, Tanggungharjo District, Grobogan Regency) [in Indonesian]. Jurnal Kesehatan Lingkungan Indonesia, 6(1), 24–32.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc3917ed-67e6-4dfb-b148-e2d91b05c9be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.