PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gray Water Recovery System Model by Solar Photocatalysis with TiO2 Nanoparticles for Crop Irrigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to establish the configuration of the system model to allow the effective recovery of gray water by solar photocatalysis with TiO2 nanoparticles for irrigation of crops. A programmable solar photoreactor based on an S7 1500 PLC and online measurement sensors were used as materials. The inductive method was used to analyze the samples and the deductive method to determine the water quality. The research design used was experimental based on the response surface methodology (MSR) with 20 experiments, 6 of which were central experiments and 6 were axial experiments; these experiments were carried out on sunny days. As a result of the research, a gray water recovery model was obtained, part of this being an electronic system with a programmable photocatalyst, which allowed the development of the experiments. It was concluded that with a solar UV index of 12.21, a dose of titanium dioxide (TiO2) nanoparticles 1.973 g/L and with an exposure period of 60.041 minutes of the solar photocatalyst to UV radiation on sunny days, gray water was recovered in 90% with a confidence level of 95% and a significance α = 0.05, which translates into excellent quality according to the water quality index established in Peru (ICA-PE).
Rocznik
Strony
78--87
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Universidad Nacional de Huancavelica, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar N° 755, Pampas-Tayacaja, Huancavelica, Perú
  • Universidad Nacional del Centro del Perú, Unidad de Postgrado de la Facultad de Ciencias Forestales y del Ambiente, Av. Mariscal Castilla N° 3909-4089, Huancayo, Perú
  • Universidad Nacional de Huancavelica, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar N° 755, Pampas-Tayacaja, Huancavelica, Perú
Bibliografia
  • 1. Adrados, B., Sánchez, O., Arias, C.A., Becares, E., Garrido, L., Mas, J., Brix, H., & Morató, J. 2014. Microbial communities from different types of natural wastewater treatment systems: Vertical and horizontal flow constructed wetlands and biofilters. Water Research, 55, 304–312. https://doi.org/10.1016/j.watres.2014.02.011
  • 2. Almomani, F., Bhosale, R., Kumar, A., & Khraisheh, M. 2018. Potential use of solar photocatalytic oxidation in removing emerging pharmaceuticals from wastewater: A pilot plant study. Solar Energy. https://doi.org/10.1016/J.SOLENER.2018.07.041
  • 3. Barwal, A., & Chaudhary, R. 2016. Feasibility study for the treatment of municipal wastewater by using a hybrid bio-solar process. Journal of Environmental Management, 177, 271–277. https://doi.org/10.1016/J.JENVMAN.2016.04.022
  • 4. Borges, M.E., Sierra, M., Cuevas, E., García, R.D., & Esparza, P. 2016. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Solar Energy, 135, 527–535. https://doi.org/10.1016/J.SOLENER.2016.06.022
  • 5. Casadei, E., & Albert, J. 2016. Food and Agriculture Organization of the United Nations. Encyclopedia of Food and Health, 749–753. https://doi.org/10.1016/B978-0-12-384947-2.00270-1
  • 6. Castro, M. 2017. Modelado cinético de la inactivación de escherichia coli en agua mediante radiación solar y aplicaciones de sodis [tesis de doctorado, Universidad de Almería]. https://dialnet.unirioja.es/servlet/tesis?codigo=181541&orden=0&info=link
  • 7. Coulson, K. 1975. Solar and terrestrial radiation: methods and measurements. In Physics Bulletin. Academic Press. https://doi.org/10.1002/9781119540328
  • 8. Deza Martí, E., Osorio Anaya, A., & Manrique Fajardo, J.J. 2017. Evaluación experimental de la degradación fotocatalítica del colorante Cibacron Navy H-2G empleando nanopartículas industriales de TiO2. Revista de La Sociedad Química Del Perú, 83(2), 160–173. https://doi.org/10.37761/rsqp.v83i2.193
  • 9. Duffie, J.A., & Beckman, W.A. 2020. Solar engineering of thermal processes, photovoltaics and wind (5th ed.). Wiley. https://doi.org/10.1002/9781119540328
  • 10. Hashimoto, K., Irei, H., & Fijishima, A. 2005. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics. https://doi.org/10.1143/JJAP.44.8269
  • 11. Jeppesen, B. 1996. Domestic greywater reuse: Australia’s challenge for the future. Desalination, 311–315. https://doi.org/10.1016/S0011-9164(96)00124-5
  • 12. Jiménez, M. 2015. Desarrollo de nuevas estrategias basadas en fotocatálisis solar para la regeneración de aguas de una industria agro-alimentaria [tesis de doctorado, Universidad de Almería]. https://www.psa.es/es/areas/tsa/docs/Tesis_Margarita_Jimenez.pdf
  • 13. Kamizoulis, G. 2008. Setting health based targets for water reuse (in agriculture). Desalination, 218(1–3), 154–163. https://doi.org/10.1016/j.desal.2006.08.026
  • 14. Kreider, J.F. 1979. Medium temperature solar collectors and ancillary components. In Academic Press (pp. 100–160). https://doi.org/10.1016/b978-0-12-425980-5.50009-1.
  • 15. Larios, J.F., Gonzales, C., & Morales, Y. 2015. Las aguas residuales y sus consecuencias en el Perú. Revista de La Facultad de Ingeniería de La USIL. https://doi.org/10.1016/S0011-9164(96)00124-5
  • 16. Madronich, S. 2007. Analytic formula for the clear-sky UV index. Photochemistry and Photobiology, 83(6), 1537–1538. https://doi.org/10.1111/j.1751-1097.2007.00200.x
  • 17. Melo, O.O., López, L.A., & Melo, S.E. 2020. Diseño de experimentos: Métodos y aplicaciones (2nd ed.). Universidad Nacional de Colombia.
  • 18. Mohamed, R.M.S.R., Kassim, A.H.M., Anda, M., & Dallas, S. 2013. A monitoring of environmental effects from household greywater reuse for garden irrigation. Environmental Monitoring and Assessment, 185(10), 8473–8488. https://doi.org/10.1007/s10661-013-3189-0
  • 19. 1Mota, M., Hernández, H., & Alaniz, M. 2018. TiO2 obtenido por el proceso sol gel asistido con microondas. Latin American Journal of Applied Engineering, 3(1), 1–4. http://lajae.uabc.mx/index.php/journal/article/view/97/75
  • 20. NASA, 2010. Observatorio de dinámica solar: La misión del “Sol variable.” https://ciencia.nasa.gov/science-at-nasa/2010/05feb_sdo
  • 21. Nfaoui, M., & El-Hami, K. 2018. Extracting the maximum energy from solar panels. Energy Reports, 4, 536–545. https://doi.org/10.1016/j.egyr.2018.05.002
  • 22. Ofori, S., Puškáčová, A., Růžičková, I., & Wanner, J. 2021. Treated wastewater reuse for irrigation: Pros and cons. Science of The Total Environment, 760, 144026. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144026
  • 23. Otálvaro, H.L., Mueses, M.A., Crittenden, J.C., & Machuca, F. 2017. Solar photoreactor design by the photon path length and optimization of the radiant field in a TiO2-based CPC reactor. Chemical Engineering Journal, 315, 283–295. https://doi.org/10.1016/j.cej.2017.01.019
  • 24. Plantard, G., Dezani, C., Ribeiro, E., Reoyo-Prats, B., & Goetz, V. 2021. Modelling heterogeneous photocatalytic oxidation using suspended TiO2 in a photoreactor working in continuous mode: Application to dynamic irradiation conditions simulating typical days in July and February. Canadian Journal of Chemical Engineering, 99(1), 142–152. https://doi.org/10.1002/cjce.23870
  • 25. Ponce, L. 2018. Tratamiento de aguas residuales mediante procesos basados en la radiación solar y el ozono. Evaluación mediante técnicas analíticas y microbiológicas avanzadas [tesis de doctorado, Universidad de Almería]. https://www.psa.es/es/areas/tsa/docs/Tesis_Laura_Ponce.pdf
  • 26. Powell, P. A., Litter, M., Blesa, M.A., & Apella, M. C. 2007. Desinfección solar de aguas por fotólisis y fotocatálisis: aplicación en Tucuman, Argentina. Medioambiente En Iberoamérica, 2, 1–6. https://dialnet.unirioja.es/servlet/articulo?codigo=7397894
  • 27. Roldán, J. 2012. Estudios de viabilidad de instalaciones solares. Paraninfo.
  • 28. Siemens, 2014. Analog input module AI 8xU/I/RTD/TC ST (6ES7531-7KF00-0AB0) Manual. https://cache.industry.siemens.com/dl/files/205/59193205/att_112065/v1/s71500_ai_8xu_i_rtd_tc_st_manual_en-US_en-US.pdf
  • 29. Silva, J., Torres, P., & Madera, C. 2008. Reuso de aguas residuales domésticas en agricultura. Una revisión. Agronomia Colombiana, 26(2), 347–359. https://www.researchgate.net/publication/262458195_Reuso_de_aguas_residuales_domesticas_en_agricultura_Una_revision_Domestic_wastewater_reuse_in_agriculture_A_review
  • 30. UNESCO, 2006. El Agua: una responsabilidad compartida, 2° informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos en el mundo, resumen ejecutivo. 52. https://unesdoc.unesco.org/ark:/48223/pf0000144409_spa
  • 31. Vargas, G., & González, G. 2014. Calibración de medidores de pH: una visión diferente. Boletín Científico Técnico INIMET, 1.
  • 32. Zaratti, F., Piacentini, R.D., Guillén, H.A., Cabrera, S.H., Liley, J. Ben, & McKenzie, R.L. 2014. Proposal for a modification of the UVI risk scale. Photochemical and Photobiological Sciences, 13(7), 980–985. https://doi.org/10.1039/c4pp00006d
  • 33. Zawadzki, P., Kudlek, E., & Dudziak, M. 2020. Titanium (IV) oxide modified with activated carbon and ultrasounds for caffeine photodegradation: adsorption isotherm and kinetics study. Journal of Ecological Engineering, 21(8), 137–145. https://doi.org/10.12911/22998993/126985
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc3851f1-932e-4a2c-8a42-5287787e5d77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.