PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of seismic magnitude‑frequency distribution in northern and central Chile

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new model, recently presented by the corresponding author, was performed in order to obtain relevant information from the frequency-magnitude distribution of earthquakes observed in northern and central zones of Chile. The model, which can be seen as a generalized non-extensive distribution, was applied to 240 data sets (seismic magnitudes) recorded over 10 years throughout the Chilean territory, since January 01, 2011. The results allow us to know in both zones the behavior of the Gutenberg-Richter and non-extensivity parameters proposed by the model. Also, a specific parameter gives us some clues about the scaling between the released energy and the inter-plate fragments size considered in the non-extensive earthquake literature. The monthly relative variance, related to fluctuations which control the behavior of the energy distribution, shows a similar trend to the respective monthly seismic average magnitude, revealing a transition toward seismic stability after the 8.4 Mω strong earthquake occurred on September 16, 2015, in Chile. After this event, fit parameters suggest that the northern zone releases more energy in contrast to the central zone. For comparison purposes, a well-known non-extensive model widely used today was applied as well.
Czasopismo
Rocznik
Strony
1619--1630
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
  • Departamento de Física, Universidad de La Serena, 170000 La Serena, Chile
Bibliografia
  • 1. Darooneh AH, Mehri A (2010) A nonextensive modification of the Gutenberg-Richter law: q-stretched exponential form. Phys A 389:509–514
  • 2. De Santis A, Cianchini G, Favali P, Beranzoli L, Boschi E (2011) The Gutenberg-Richter law and entropy of earthquakes: two case studies in central Italy. Bull Seism Soc Am 101:1386–1395
  • 3. El-Isa ZH (2013) Continuous cyclic variations in the b-value of the earthquake frequency magnitude-distribution. Earthq Sci 26(5):301–320
  • 4. El-Isaa ZH, Eaton DW (2014) Spatio temporal variations in the b-value of earthquake magnitude-frequency distributions: classification and causes. Tectonophysics 615–616:1–11
  • 5. Gibowicz SJ (1973) Variation of the frequency-magnitude relation during earthquake sequences in New Zealand. Bull Seismo Soc Am 63(2):517–528
  • 6. Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. GSA Bull 112(7):1091–1105
  • 7. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seism Soc Am 34:185–188
  • 8. Hussain H, Shuangxi Z, Usman M, Abid M (2020) Spatial variation of b-values and their relationship with the fault blocks in the western part of the Tibetan plateau and its surrounding areas. Entropy 22(9):1016
  • 9. Kagan YY, Jackson DD (2013) Tohoku earthquake: a surprise? Bull Seismol Soc Am 103:1181–1194
  • 10. Lockridge PA (1985) Tsunamis in Peru-Chile. Report SE-39, Boulder, WDC-A for Solid Earth Geophysics 97
  • 11. Main IG, Burton PW (1984) Information theory and the earthquake-magnitude distribution. Bull Seismol Soc Am 74:1409
  • 12. Main IG (1995) Earthquakes as critical phenomena: implications for probabilistic seismic hazard analysis. Bull Seismol Soc Am 85(5):1299–1308
  • 13. Main IG (1996) Statistical physics, seismogenesis, and seismic hazard. Rev Geophys 34:433
  • 14. Main IG, O’Brien G, Henderson JR (2000) Statistical physics of earthquakes: comparison of distribution exponents for source area and potential energy and the dynamic emergence of log-periodic energy quanta. J Geophys Res 105:6105–6126
  • 15. Olsson R (1999) An estimation of the maximum b-value in the Gutenberg-Richter relation. Geodynamics 27:547–552
  • 16. Posadas A, Sotolongo-Costa O (2023) Non-extensive entropy and fragment-asperity interaction model for earthquakes. Comm Nonlinear Sci Numer Simulat 117:106906
  • 17. Sahie O, Saikia M (1994) The b value before the 6th August, 1988 India-Myanmar Border Region Earthquake-a case study. Tectonophysics 234(4):349–354
  • 18. Sánchez E (2019) Burr type-XII as a superstatistical stationary distribution. Phys A 516:443–446
  • 19. Sánchez E (2022) Emergence of non-extensive seismic magnitude-frequency distribution from a Bayesian framework. Earthq Sci 35(3):186–192
  • 20. Scholz CH (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seism Soc Am 58(1):399–415
  • 21. Silva R, Franca GS, Vilar CS, Alcaniz JS (2006) Nonextensive models for earthquakes. Phys Rev E 73:026102
  • 22. Singh C, Singh A, Chadha RK (2009) Fractal and b-value mapping in Eastern Himalaya and Southern Tibet. Bull Seismo Soc Am 99:3529–3533
  • 23. Sotolongo O, Posadas A (2004) Fragment-asperity interaction model for earthquakes. Phys Rev Lett 92:048501
  • 24. Telesca L (2010) Analysis of Italian seismicity by using a nonextensive approach. Tectonophysics 494:155–162
  • 25. Telesca L (2012) Maximum likelihood estimation of the nonextensive parameters of the earthquake cumulative magnitude distribution. Bull Seismo Soc Am 102(2):886–891
  • 26. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479–487
  • 27. Vilar CS, França GS, Silva R, Alcaniz JS (2007) Nonextensivity in Geological Faults? Phys A 377(1):285–290
  • 28. Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv Geophys 45:259–302
  • 29. Wilk G, Wlodarczyk Z (2000) Interpretation of the nonextensivity parameter q in some applications of Tsallis statistics and Lévy distribution. Phys Rev Lett 84:2770
  • 30. Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J R Astr Soc 31:341–359
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc2eaee5-9d92-4851-97e8-a4c12b6d696a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.