Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Review and analytical comparison of equations estimating the values of the Darcy friction factor
Języki publikacji
Abstrakty
W artykule przedstawiono jawne formuły używane do obliczania współczynnika oporów liniowych oraz zbadanie ich dokładności i przydatności w różnych warunkach pracy przewodów, tj. przy różnych wartościach liczby Reynoldsa i chropowatości względnej. Otrzymane wyniki zostały porównane z wynikami otrzymywanymi z powszechnie rekomendowanego równania Colebrooka-White’a. Następnie za pomocą wskaźników w postaci błędu średniego, błędu względnego i maksymalnego błędu względnego została przeprowadzona analiza porównawcza. Równanie Colebrooka-White’a nie da się przekształcić do postaci jawnej, dlatego wymaga ono rozwiązania iteracyjnego. Zbieżność współczynnika oporów liniowych na poziomie mniejszym niż 0.1 % wymaga zwykle co najmniej 6 przybliżeń. Ostatecznie udało się stwierdzić, że wiele dostępnych przybliżeń równania Colebrooka-White’a jest bardzo dokładna.
The article presents explicit formulas used to calculate the Darcy factor and examines their accuracy and applicability in various operating conditions, i.e., at different values of Reynolds number and roughness. The obtained results were compared with those obtained from the commonly recommended Colebrook-White equation. Subsequently, a comparative analysis was conducted using indicators such as mean error, relative error, and maximum relative error. The Colebrook-White equation cannot be transformed into explicit form, requiring an iterative solution. Convergence of the linear resistance coefficient at a level lower than 0.1% typically requires at least 6 approximations. Ultimately, it was found that many available approximations of the Colebrook-White equation are highly accurate.
Czasopismo
Rocznik
Tom
Strony
16--23
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wzory
Twórcy
autor
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Budownictwa i Inżynierii Środowiska
Bibliografia
- [1] Gupta R., Bhave P.R.; “Fuzzy parameters in pipe network analysis”. Civil Eng Environ Syst. Vol. 24, Number 1, pp 33-54, 2007
- [2] Lukman S., Oke I. A.; “Accurate solutions of Colebrook-White’s friction factor formulae”, Nigerian Journal of Technology, Vol. 36, No. 4, 2017,
- [3] Gajdos T., Hayashi T.; Tallon J.M.; Vergnaud J.C.; “Attitude toward imprecise information”, Journal of Economic Theory Volume 140, Issue 1, 2008
- [4] Altuszul D.; „Gidrawliczeskije potieri na trenje w truboprowodach”, Gosenergoizdat, Moskwa 1963
- [5] Clamond D.; “Efficient resolution of the Colebrook equation,” Industrial and Engineering Chemistry Research, vol. 48, no. 7, 2009
- [6] Fanning J.T.; “A practical treatise on hydraulic and water-supply engineering”, D. Van Nostrand, 1896
- [7] Malesińska A., „Czy wybór wzoru do obliczania λ ma znaczenie?”, Gaz, Woda i Technika Sanitarna, Styczeń 2015
- [8] Oke I.A.; “Performance evaluation for Darcy friction factor formulae using Colebrook-White as reference”, Ife Journal of Science vol. 17, no. 1, 2015
- [9] Moody M.L.; “An approximate formula for pipe friction factors”, Trans. ASME, p. 1005, 1947
- [10] Olivares A., Guerra R., Alfaro M.; Notte-cuello E.; Puentes L.; “Experimental evaluation of correlations used to calculate friction factor for turbulent flow in cylindrical pipes”, Rev. int. métodos numér. cálc. diseño ing., Vol. 35, 2019
- [11] Wood D.J.; “An explicit friction factor relationship”, Civil Engrs. ASCE 60, 1966
- [12] Eck B.; “Technische Stromungslehre”; Springer:, New York, 1973
- [13] Churchill S.W.; “Empirical expressions for the shear stressing turbulent flow in commercial pipe:, AIChE Journal 19(2):375-376, 1973
- [14] Jain A.K.; “Accurate explicit equations for friction factor”, Proc. ASCE, J. Hydraulics Div., 102, p. 674, 1976
- [15] Swamee P. K., Jain, A. K.; ”Explicit equations for pipe-flow problems”, Journal of the Hydraulics Division, ASCE 102, HY5, 657-664, 1976
- [16] Churchill, S.W.; “Friction factor equation spans all fluid-flow regimes”, Chem Eng 84(24):91-92, 1977
- [17] Chen, N.H.; “An explicit equation for friction factor in pipe”, Ind Eng Chem Fundam 18(3):296-304
- [18] Round G.F.; “An explicit approximation for the friction-factor Reynolds number relation for rough and smooth pipes”, Can. J. Chem. Eng., 58 (1), p. 122, 1980
- [19] Barr D.I.H.; “Solutions of the Colebrook-White function for resistance to uniform turbulent flow“, Proc. Inst. Civil Engrs., Part 2, 71, p. 529, 1981
- [20] Zigrang D.J.; Sylvester N.D.; “Explicit approximations to the Colebrook’s friction factor” AIChE J., 28 (3), p. 514, 1982
- [21] Haaland S.E.; “Simple and explicit formulas for the friction-factor in turbulent pipe flow”, Trans. ASME, JFE, 105, p. 89, 1983
- [22] Serghides, T. K. 1984. Estimate friction factor accurately. Chem Eng. 91:63-64.
- [23] Tsal R. J.; “Altshul-Tsal friction factor equation, Heating, Piping and Air Conditioning”, ASCE 102:657-664, 1989
- [24] Manadilli G.; “Replace implicit equations with signomial functions” Chem. Eng., 104 (8), p. 129, 1989
- [25] Romeo, E., Royo, C., Monzon, A.; “Improved explicit equation for estimation of the friction factor in rough and smooth pipes”, Chemical Engineering Journal 86 (3):369-374, 2002
- [26] Sonnad, J. R., Goudar, C. T.; “Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation”, J. Hydraul Eng, ASCE 132(8):863-867, 2006
- [27] Rao A.R., Kumar B.; “Friction factor for turbulent pipe flow”, Division of Mechanical Science, Civil Engineering, Indian Institute of Science, Bangalore, India, 2007
- [28] Rao A.R., Kumar B.; “Transition of turbulent pipe flow”, J. Hydraul. Res. IAHR, 47 (4), pp. 529-533, 2009
- [29] Swamee P.K., Swamee N.; “Full-range pipe-flowequations”, Journal of Hydraulic Research 45:841-843, 2007
- [30] Buzzelli D.; “Calculating friction in one step”, Mach. Des., 80 (12), pp. 54-55, 2008
- [31] Vatankhah, A. R., Kouchakzadeh, S., Discussion of “Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation”, Hydraul. Eng. ASCE 134(8):1187-11942, 2008
- [32] Cheng, N.S.; “Formulas for Friction Factor in Transitional Regimes”. Journal of Hydraulic Engineering. 134(9):1357-1362, 2008
- [33] Avci, A., Karagoz, I.; “A novel explicit equation for friction factor in smooth and rough pipes”, J. Fluids Eng. 131(6):61203, 1-4, 2009
- [34] Evangelides, C., Papaevangelou, G., Tzimopoulos, C., A New Explicit Relation for the Friction Factor Coefficient in the Darcy-Weisbach Equation., PREC, New Jersey, 2010
- [35] Brkić D.; “Review of explicit approximations to the Colebrook relation for flow friction”, Journal of Petroleum Science and Engineering 77 (1), 34-48, 2011
- [36] Fang X., Xu Y., Zhou Z.; “New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations”, Nuclear Engineering and Design 241 (3), 897-902, 2011
- [37] Ghanbari A., Farshad F.F., Rieke H.H.; “Newly developed friction factor correlation for pipe flow and flow assurance”, J. Chem. Eng. Mater. Sci. 2 (6), 83-86, 2011
- [38] Li P., Seem J.E., Li Y.; “A new explicit equation for accurate friction factor calculation of smooth pipes”, Int. J. Refrig., 34(6):1535-1541, 2011
- [39] Samadianfard S.; “Gene expression programming analysis of implicit Colebrook-White equation in turbulent flow friction factor calculation”, JPSE 92-93, 48-55, 2012
- [40] Winning H. K., Coole T.; “Improved method of determining friction factor in pipes”. International Journal of Numerical Methods for Heat & Fluid Flow 25 (4), 941-949, 2015
- [41] Heydari A., Narimani E., Pakniya F.; “Explicit determinations of the Colebrook equation for the flow friction factor by statistical analysis”, Chem. Eng. & Tech. 38 (8), 1387-1396, 2015
- [42] Mikata, Y., Walczak, W. S. “Exact analytical solutions of the Colebrook-White equation.” Journal of Hydraulics Engineering, 2015
- [43] Brkić D. “A note on explicit approximations to Colebrook’s friction factor in rough pipes under highly turbulent cases”, International Journal of Heat and Mass Transfer 93, 513-515, 2016
- [44] Biberg D.; “Fast and accurate approximations for the Colebrook equation”, Journal of Fluids Engineering 139 (3), 031401, 2016
- [45] Offor U.H., Alabi S.B.; “An accurate and computationally efficient explicit friction factor model”, Advances in Chemical Engineering and Science 06 (03), 237-245, 2016
- [46] Brkić D., Praks P.; “Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright ω-function”. Mathematics 7 (1), 34, 2018
- [47] Bellos V., Nalbantis I.; Tsakiris G.; “Friction Modeling of Flood Flow Simulations”, Journal of Hydraulic Engineering, 2018
- [48] Bellos V., Nalbantis I.; Tsakiris G.; “Erratum for “Friction Modeling of Flood Flow Simulations”“. Journal of Hydraulic Engineering, 2020
- [49] Vatankhah A.R.; “Approximate analytical solutions for the Colebrook equation”, Journal of Hydraulic Engineering 144 (5), 2018
- [50] Niazkar M.; “Revisiting the Estimation of Colebrook Friction Factor: A Comparison between Artificial Intelligence Models and C-W based Explicit Equations”. KSCE Journal of Civil Eng., 2019
- [51] Mileikovskyi V., Tkachenko T.; “Precise Explicit Approximations of the Colebrook-White Equation for Engineering Systems”. Proceedings of EcoComfort, 2020.
- [52] Zahreddine H.; “Accurate explicit analytical solution for Colebrook-White equation”, Mechanics Research Communications, Volume 111, 2021,
- [53] KATALOG TECHNICZNY Instalacje do ciepłej i zimnej wody użytkowej Radopress oraz ogrzewania podłogowego Floortherm firmy Pipelife.
- [54] SYSTEM KAN-therm, Poradnik PROJEKTANTA I WYKONAWCY firmy KAN-therm
- [55] https://product-selection.grundfos.com/pl/products/alpha/alpha1-n/alpha1-20-60-n-150-99452182?pumpsystemid=2281976169&tab=variant-sizing-results, dostęp 20.02.2024
- [56] Areerachakul N., Girdwichai L., Areerakulkan N.; “Discussion of “Accurate explicit analytical solution for Colebrook-White equation” by Zahreddine H.”, MRC, Volume 117, 2021
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc22a6c8-4a11-4383-a987-77dea89eff5c