PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Thermodynamic analysis of a thermoacoustic travelling wave engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermoacoustics has become a promising technology to use heat from low temperature sources to drive engines. This study proposes a single-stage thermoacoustic travelling-wave engine for waste-heat recovery at 150°C. All the construction details of such a system are provided. A recently developed configuration of a looped tube with an impedance matching side-branch stub is proposed. A numerical model of the engine is built in DeltaEC software to conduct the simulations. Furthermore, a detailed thermodynamic analysis of the engine is presented, including an energy balance, a description of the basic acoustic parameters in a steady state, as well as a study of a variable load influence on the performance of the engine. The Authors pointed out the necessity of the engine optimization and a proper choice of load related acoustic impedance, which would consider a trade-off between high power and high efficiency. Eventually, a possibility of achieving 40% exergy efficiency of the proposed engine is confirmed.
Rocznik
Strony
67--74
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Thermodynamics, Theory of Machines and Thermal Systems, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
autor
  • Institute of Aerospace Engineering, TU Dresden, 01062 Dresden, Germany
autor
  • Department of Thermodynamics, Theory of Machines and Thermal Systems, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Swift G.W. (2002), Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, Acoustical Society of America.
  • 2. Ceperley P.H. (1979), A pistonless Stirling engine -The traveling wave heat engine, J. Acoust. Soc. Am. 66, 1508–1513.
  • 3. Ceperley P.H. (1985), Gain and efficiency of a short traveling wave heat engine, J. Acoust. Soc. Am. 77, 1239–1244.
  • 4. Yazaki T., Iwata A., Maekawa T., Tominaga A. (1998), Traveling Wave Thermoacoustic Engine in a Looped Tube, Phys. Rev. Lett. 81, 3128–3131.
  • 5. Backhaus S., Swift G.W. (2000), A thermoacoustic-Stirling heat engine: detailed study, J. Acoust. Soc. Am. 107, 3148–66.
  • 6. Tijani M.E.H., Spoelstra S. (2011), A high performance thermoacoustic engine, J. Appl. Phys. 110, 93519.
  • 7. Haberbusch M.S., Nguyen C.T., Ickes J.C., Hui T.Y. (2013), 4 kW Thermoacoustic Stirling Heat Engine Test Results, 11th Int. Energy Convers. Eng. Conf., San Jose.
  • 8. de Blok K. (2008), Low operating temperature integral thermo acoustic devices for solar cooling and waste heat recovery, J. Acoust. Soc. Am. 123, 3541.
  • 9. Zhang X., Chang J., Cai S., Hu J. (2016), A multi-stage travelling wave thermoacoustic engine driven refrigerator and operation features for utilizing low grade energy, Energy Convers. Manag. 114, 224–233.
  • 10. de Blok K. (2012), Multi-stage Traveling Wave Thermoacoustics in Practice, in: ICSV 19, Vilnius, Lithuania, 2012, pp. 1–8.
  • 11. Zhang X., Chang J. (2015), Onset and steady-operation features of low temperature differential multi-stage travelling wave thermoacoustic engines for low grade energy utilization, Energy Convers. Manag. 105, 810-816.
  • 12. Ward B., Clark J.; Swift G.W. (2016), Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC), Version 6.4b2, Users Guide, E-Book.
  • 13. Yu Z., Jaworski A.J. (2010), Impact of acoustic impedance and flow resistance on the power output capacity of the regenerators in travelling-wave thermoacoustic engines, Energy Convers. Manag. 51, 350–359.
  • 14. Bi T., Wu Z., Zhang L. (2015), Yu G., Luo E., Dai W., Development of a 5kW traveling-wave thermoacoustic electric generator, Appl. Energy, 1–7.
  • 15. Wang K., Zhang J., Zhang N., Sun D.,. Luo K, Zou J., Qiu L. (2016), Acoustic matching of a traveling-wave thermoacoustic electric generator, Appl. Therm. Eng 102, 272–282.
  • 16. Backhaus S., Tward E., Petach M. (2004) Traveling-wave thermoacoustic electric generator, Appl. Phys. Lett 85, 1085–1087.
  • 17. de Blok K., Owczarek P., Francois M. (2014), Bidirectional turbines for converting acoustic wave power into electricity, 9th PAMIR Int. Conf., Ryga.
  • 18. Kruse, A., Ruziewicz, A., Tajmar, M., Gnutek, Z. (2017), A numerical study of a looped-tube thermoacoustic engine with a single-stage for utilization of low-grade heat. Energy Conversion and Management 149, 206–218.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc20b199-3610-467c-be44-153fa9fbf6c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.