PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stokes flow around slowly rotating concentric previous spheres

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przepływ stokesowski wokół powolnie wirujących koncentrycznych kul przepuszczalnych
Języki publikacji
EN
Abstrakty
EN
In this paper, the problem of concentric pervious spheres carrying a fluid sink at their centre and rotating slowly with different uniform angular velocities Ω1, Ω2 about a diameter has been studied. The analysis reveals that only azimuthal component of velocity exists and the torque, rate of dissipated energy is found analytically in the present situation. The expression of torque on inner sphere rotating slowly with uniform angular velocity Ω1, while outer sphere also rotates slowly with uniform angular velocity Ω2, is evaluated. The special cases like, (i) inner sphere is fixed (i.e. Ω1 = 0), while outer sphere rotates with uniform angular velocity Ω2, (ii) outer sphere is fixed (i.e. Ω2 = 0), while inner sphere rotates with uniform angular velocity Ω1, (iii.) inner sphere rotates with uniform angular velocity Ω1, while outer rotates at infinity with angular velocity Ω2; have been deduced. The corresponding variation of torque with respect to sink parameter has been shown via figures. AMS subject classification – 76 D07.
PL
W artykule rozważa się problem koncentrycznych kul przepuszczalnych, ze zlewem płynu w centrum, które wirują powoli wokół średnicy z jednostajnymi prędkościami kątowymi Ω1 i Ω2. Analiza wykazała, że istnieje tylko azymutalny składnik prędkości, a moment obrotowy i szybkość rozpraszania energii są w istniejących warunkach wyznaczane analitycznie. Wyprowadzono wyrażenie na moment obrotowy na powierzchni wewnętrznej kuli powolnie wirującej z jednostajną prędkością kątową Ω1, podczas gdy kula zewnętrzna także powolnie wiruje z jednostajną prędkością kątową Ω2. Zbadano także przypadki szczególne, takie jak: (i) kula wewnętrzna jest nieruchoma (tzn. Ω1 = 0), podczas gdy kula zewnętrzna wiruje z jednostajną prędkością kątową Ω2, (ii) kula zewnętrzna jest nieruchoma (tzn. Ω2 = 0), podczas gdy kula wewnętrzna wiruje z jednostajną prędkością kątową Ω1, (iii) kula wewnętrzna wiruje z jednostajną prędkością kątową Ω1, podczas gdy kula zewnętrzna wiruje w nieskończonej odległości z prędkością kątową Ω2. Na wykresach przedstawiono zależności między zmianami momentu obrotowego a parametrami zlewu.
Rocznik
Strony
165--184
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
  • Department of Mathematics; B.S.N.V. Post Graduate College (University of Lucknow, Lucknow); Lucknow-226001, U.P., India
autor
  • Department of Mathematics, University of Lucknow, Lucknow (U.P.), India
autor
  • Department of Mathematics, University of Lucknow, Lucknow (U.P.), India
Bibliografia
  • [1] Barett K. E.: On the impulsively started rotating sphere, Journal of Fluid Mechanics, Vol. 27, 1967, pp. 779.
  • [2] Brenner H.: The slow motion of a sphere through a viscous fluid towards a plane surface, Chem. Eng. Sci., 16, 1961, pp. 242-251.
  • [3] Childress S.: The slow motion of a sphere in a rotating viscous fluid, J. Fluid Mech., vol. 20, 1964, pp. 305-314.
  • [4] Cooley M. D. A.: The slow rotation in a viscous fluid of a sphere close to another fixed sphere about a diameter perpendicular to the line of centers. Quart. J. Mech. Appl. Math. Vol. 24, 1971, pp. 237-250.
  • [5] Datta S.: Stokes flow past a sphere with a source at its center. Mathematik Vesnik Vol. 10 (25), 1973, pp. 227-229.
  • [6] Datta S., and Srivastava D. K.: Slow rotation of a sphere in a viscous flow with source at its center. Proc. (Math. Sci.), Indian Academy of Sciences Vol. 110, No. 1, Feb. 2000, pp. 117-120.
  • [7] Davis A.M.J., and Brenner H.: Steady rotation of a tethered sphere at small, non-zero Reynolds and Taylor numbers: wake interference effects on drag, J. Fluid Mech., vol. 168, 1986, pp. 151-167.
  • [8] Davis A.M.J.: Force and torque on a rotating sphere close to and within a fluid-filled rotating sphere, American Physical Society, 59th Annual Meeting of the APS Division of Fluid Dynamics, Nov. 19-21, 2006.
  • [9] Davis M. H.: The slow rotation and translation of two unequal spheres in a viscous fluid. Chem. Eng. Sci. Vol.24, issue 12, Dec. 1969, pp. 1769-1776.
  • [10] Dennis S. C. R., Ingham D.B., and Singh S.N.: The steady flow of a viscous fluid due to a rotating sphere, Quart. J. Mech. Appl. Math., vol. 34, 1981, pp. 361-381.
  • [11] Drew D.A.: The force on a small sphere in slow viscous flow, J. Fluid Mech., vol. 88, 1978, pp. 393-400.
  • [12] Gagliardi, John Charles: Analytical studies of axially symmetric motion of an incompressible viscous fluid between two concentric rotating spheres, Ph.D. Thesis, Marquette University, Milwaukee, W.I., 1987.
  • [13] Gagliardi, John Charles, Nigro N.J., Elkouh A.F., Yang J.K., and Rodriguez L.: Study of the axially symmetric motion of an incompressible viscous fluid between two concentric rotating spheres, J. Engrg. Math., vol. 24, 1990, pp. 1-23.
  • [14] Happel J., and Brenner H.: Low Reynolds number hydrodynamics, Prentice Hall Englewood, 1965, 1985, Clifs NJ.
  • [15] Ifidon E. O.: Numerical studies of viscous incompressible flow between two rotating concentric spheres, Journal of Applied Math. (Hindawi Pub.), vol. 2, 2004, pp. 91-106.
  • [16] Jeffrey G. B.: On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. vol. 14 (1915), pp. 327-338.
  • [17] Kanwal R.P.: Slow steady rotation of axially symmetric bodies in a viscous fluid. J. Fluid Mech. vol. 10 (1960), pp. 17-24.
  • [18] Kanwal R. P.: Note on slow rotation or rotary oscillations of axi-symmetric bodies in hydrodynamics and magnetohydrodynamics. J. Fluid Mach. vol. 41, no. 4, 1970, pp. 721-726.
  • [19] Karanfilian S.K., and Kotas T.J.: Motion of a spherical particle in a liquid rotating as a solid body, Proc. Roy. Soc. London Ser. A, vol. 376, 1981, pp. 525-544.
  • [20] Kim Dong Joo, and Choi Hae Cheon: Laminar flow past a sphere rotating in the streamwise direction. J. Fluid Mech. vol. 461, 2002, pp. 365-386.
  • [21] Kim Moon-Uhn: Slow viscous rotation of a sphere on the axis of a circular cone. Physics of Fluid, Vol. 23, issue 6, 1980, pp. 1268-1269.
  • [22] Kohr Mirella, and Pop I.: Incompressible Flow for Low Reynolds Numbers, W.I.T. Press, Southampton, U.K., 2004.
  • [23] Lamb H.: Hydrodynamics. Dover Publications, 1954.
  • [24] Landau L.D., and Lifshitz E.M.: (1959, 1976, 1984) Fluid Mechanics, Pergamon Press, New York., 1959, 1976, 1984.
  • [25] Langlois L.E.: Slow Viscous Flow, Macmillan Publishers, NY, USA, 1964.
  • [26] Liu M., Delgado A., and Rath H.J.: A numerical method for study of the unsteady viscous flow between two concentric rotating spheres, Computational Mechanics, vol. 15, no. 1, 2004, pp. 45-57.
  • [27] Majumdar S.R.: On the slow motion of viscous liquid in space between two eccentric spheres, J. Phys. Soc. Japan, vol. 26, no. 3, 1969, pp. 827.
  • [28] Marcello Romano: Exact analytic solutions for the rotation of an axially symmetric rigid body subjected to a constant torque, Celestial Mechanics and Dynamical Astronomy, vol. 101, no. 4, 2008, pp. 375-390.
  • [29] Marcus Philips S., and Tuckerman Laurette S.: Simulation of flow between concentric rotating spheres. Part 1. Steady Case, J. Fluid Mech., vol. 185, 1987, pp. 1-30. [Part 2, Transitions, J. Fluid Mech., vol. 185, 1987, pp. 31-65].
  • [30] Munson B.R., and Joseph D.D.: Viscous incompressible flow between concentric rotating spheres. Part 1. Basic flow, J. Fluid Mech., vol. 49, 1971, pp. 289-318. [Part2. Hydrodynamic stability, J. Fluid Mech., vol. 49, no. 2, 1971, pp. 305-318].
  • [31] Munson B.R., and Menguturk M.: Viscous incompressible flow between concentric rotating spheres. Part 3. Linear stability and experiments, J. Fluid Mech., vol. 69, 1975, pp. 705-719.
  • [32] O’Neill M.E., and Majumdar R.: Asymmetrical viscous fluid motions caused by the translation or rotation of two spheres. Part 1: The determination of exact solutions for any values of the ratio of radii and separation parameters, Z.A.M.P., vol. 21, no. 2, 1970, pp. 164-179.
  • [33] O’Neill M.E., and Majumdar R.: Asymmetrical viscous fluid motions caused by the translation or rotation of two spheres. Part 2: Asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero, Z.A.M.P., vol. 21, no. 2, 1970, pp. 180-187.
  • [34] O’ Neill M.E., and Yano H.: The slow rotation of a sphere straddling a free surface with a surfactant layer. Quart. J. Mech. Appl. Math. vol. 41, 1988, pp. 479-501.
  • [35] O’ Neill M.E., Ranger K. B., Brenner H.: Slip at the surface of a free surface bounding a semi-infinite viscous fluid: Removal of the contact-line singularity. Physics of Fluid, vol. 29, no. 4 (1986), pp. 913-924.
  • [36] Placek Timothy D., and Peters Leonard K.: A hydrodynamic approach to particle target efficiency in the presence of diffusiophoresis. J. Aerosal Sci. vol. 11 (1980), pp.521-533.
  • [37] Pearson Carl E.: A numerical study of the time dependent viscous flow between two rotating spheres. J. Fluid Mech. vol. 28, 1967, p.323.
  • [38] Philander S. G. H.: On the flow properties of a fluid between concentric spheres. J. Fluid Mech. vol. 47, no. 4, 1971, pp.799.
  • [39] Pozrikidis C.: Introduction to theoretical and computational fluid dynamics, Oxford University Press, 1997.
  • [40] Proudman I.: The almost rigid rotations of viscous fluid between concentric spheres, J. Fluid Mech., vol. 1, 1956, pp. 505-516.
  • [41] Ranger K. B.: Time dependent decay of the motion of a sphere translating and rotating in a viscous liquid. Quart. J. Mech. Appl. Math. vol. 49, no. 4, 1996, pp. 621-633.
  • [42] Ranger K. B.: Slow viscous flow past a rotating sphere. Proc. Camb. Phil. Soc. vol.69 (1971), p.333.
  • [43] Riley T.: Thermal effects on slow viscous flow between rotating concentric spheres, International J. Non-Linear Mechanics, vol. 7, no. 3, 1972, pp. 275-288.
  • [44] Rubinow S.I., and Keller J. B.: Transverse force on a spinning sphere moving in a viscous fluid, J. Fluid Mech., vol. 11, 1961, pp. 447-459.
  • [45] Srivastava D.K., Yadav R.R., and Yadav Supriya: Slow rotation of sphere with sink at the centre of sphere in a viscous fluid, Proc. National Symposium on Application of Various Techniques in Fluid Dynamics, 2011, pp. 217-224. [ISBN:9788192132303].
  • [46] Stewartson K.: On almost rigid rotations: Part 2., J. Fluid Mech., vol. 26, 1966, pp. 131-144.
  • [47] Singh S.N.: The flow past a spinning sphere in a slowly rotating fluid at small Reynolds number, Intl. J. Engrg. Sci., vol. 13, 1975, pp. 1085-1089.
  • [48] Takagi Hideaki: Slow rotation of two touching spheres in a viscous fluid, J. Phys. Soc. Japan, vol. 36, no. 3, 1974, pp. 875.
  • [49] Takagi Hideaki: On the slow motion of a sphere in a viscous fluid, J. Phys. Soc. Japan, vol. 37, no. 2, 1974, pp. 505.
  • [50] Takagi Hideaki: Viscous flow induced by slow rotation of a sphere, J. Phys. Soc. Japan, vol. 42, no. 1, 1977, pp. 319.
  • [51] Tekasakul P., Tompson R.V., and Loyalka S.K.: Rotatory oscillations of arbitrary axisymmetric bodies in an axisymmetric viscous flow: Numerical solutions, Physics of Fluids, vol. 10, no. 11, 1998, pp. 2797-2818.
  • [52] Tekasakul P., and Loyalka S.K.: Rotatory oscillations of axisymmetric bodies in an axisymmetric viscous flow with slip: Numerical solutions for spheres and spheroids, Int. J. Num. Meth. Fluids, vol. 41, no. 8, 2003, pp. 823-940.
  • [53] Wakiya Shoichi: Slow motions of a viscous fluid around two spheres, J. Phys. Soc. Japan, vol. 22, no. 4, 1967, pp. 1101.
  • [54] Wimmer Manfred: Experiments on a viscous fluid flow between concentric rotating spheres, J. Fluid Mech., vol. 78, 1976, pp. 317-335.
  • [55] Yang Jen-Kang, Nigro Nicholas J., Elkouh Andel F., and Gagliardi John Charles: Numerical study of the axially symmetric motion of an incompressible viscous fluid in an annulus between two concentric rotating spheres, Int. J. for Numerical Methods in Fluids, vol. 9, no. 6, 1989, pp. 689-712.
Uwagi
EN
[from author] I acknowledge my sincere thanks to the anonymous referees for their invaluable comments and suggestions to improve the quality of the manuscript. I also express my thanks and gratitude to the authorities of B.S.N.V. Post Graduate College, Lucknow (Uttar Pradesh), India, for providing the basic infra structure facilities throughout the preparation of this work at the department of mathematics. Third author (SY) is thankful to University Grants Commission, New Delhi, to provide Junior Research Fellowship.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc197c6c-209d-4bb5-a429-e0a178189f3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.