Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
Abstrakty
The publication presents experimental verification of a mathematical model of silver nanowire (AgNWs) fabrication in a continuous flow process in a helical tubular reactor. Silver nanowires were synthesised with a polyol process, with ethylene glycol as the reductant of the nanomaterial precursor and solvent of the reactants. The observed average diameters and lengths of AgNWs were 98–226 nm and 5–45 μm, respectively. The experimental conversions of the precursor were 0.71–0.90. A comparison of calculated and measured conversions for the investigated range of residence times and temperatures showed that the observed error was less than 20%.
Rocznik
Tom
Strony
art. no. e26
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
- Silesian University of Technology, Department of Chemical Engineering and Process Design, Strzody 7, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Doctoral School, Akademicka 2A, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Doctoral School, Akademicka 2A, 44-100 Gliwice, Poland
Bibliografia
- 1. Chen D., Qiao X., Qiu X., Chen J., Jiang R., 2010. Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method. Nanotechnology, 21, 025607. DOI: 10.1088/0957-4484/21/2/025607.
- 2. Chou K.S., Hsu Ch.-Y., Liu B.-T., 2015. Salt-mediated polyol synthesis of silver nanowires in a continuous-flow tubular reactor. RSC Adv., 5, 29872-29877. DOI: 10.1039/C5RA00320B.
- 3. Doran P.M., 2013. Bioprocess engineering principles. 2nd edition, Academic Press, Waltham, 816–819. DOI: 10.1016/C2009-0-22348-8.
- 4. Dzido G., 2017. Analiza wpływu pola mikrofalowego na charakterystykę nanocząstek srebra i tlenku miedzi otrzymywanych w procesie przepływowym. Wydawnictwo Politechniki Śląskiej, Gliwice, 117–123.
- 5. Espinosa N., Søndergaard R.R., Jørgensen M., Krebs F.C., 2016. Flow synthesis of silver nanowires for semitransparent solar cell electrodes: A life cycle perspective. ChemSusChem., 9, 893–899. DOI: 10.1002/cssc.201501437.
- 6. Gottesman R., Tangy A., Oussadon I., Zitoun D., 2012. Silver nanowires and nanoparticles from a millifluidic reactor: application to metal assisted silicon etching. New J. Chem., 36, 2456–2459. DOI: 10.1039/C2NJ40763A.
- 7. Ha H., Amicucci C., Matteini P., Hwang B., 2022. Mini review of synthesis strategies of silver nanowires and their applications. Colloid Interface Sci. Commun., 50, 100663. DOI: 10.1016/j.colcom.2022.100663.
- 8. Hemmati S., Barkey D.P., Eggleston L., Zukas B., Gupta N., Harris M., 2017. Silver nanowire synthesis in a continuous millifluidic reactor. ECS J. Solid State Sci. Technol., 6, 144–149. DOI: 10.1149/2.0171704jss.
- 9. Hobler T., 1979. Ruch ciepła i wymienniki. 5th edition, WNT, Warszawa, 523–525.
- 10. Luu Q.N., Doorn J.M., Berry M.T., Jiang C., Lin C., May P.S., 2011. Preparation and optical properties of silver nanowires and silver-nanowire thin films. J. Colloid Interface Sci., 356, 151– 158. DOI: 10.1016/j.jcis.2010.12.077.
- 11. Manlapaz R.L., Churchill S.W., 1981. Fully developed laminar convection from a helical coil. Chem. Eng. Commun., 9, 185–200. DOI: 10.1080/00986448108911023.
- 12. Nandikonda S., Davis E.W., 2011. Parameters affecting the microwave-assisted polyol synthesis of silver nanorods. Int. Scholarly Res. Not., 2011, 104086. DOI: 10.5402/2011/104086.
- 13. Patakfalvi R., Dékány I., 2005. Nucleation and growth of silver nanoparticles monitored by titration microcalorimetry. J. Therm. Anal. Calorim., 79, 587–594. DOI: 10.1007/s10973-005-0583-z.
- 14. Senkara T., 1981. Obliczenia cieplne pieców grzewczych w hutnictwie. Wydawnictwo Śląsk, Katowice, 42–43.
- 15. Yu J., Yang L., Jiang J., Dong X., Cui Z., Wang Ch., Lu Z., 2022. Scalable production of high-quality silver nanowires via continuous-flow droplet synthesis. Nanomaterials, 12, 1018. DOI: 10.3390/nano12061018.
- 16. Zeng X., Zhou B., Gao Y., Wang C., Li S., Yeung C.Y., Wen W.J., 2014. Structural dependence of silver nanowires on polyvinylpyrrolidone (PVP) chain length. Nanotechnology, 25, 495601. DOI: 10.1088/0957-4484/25/49/495601.
- 17. Zhai X., Efrima S., 1996. Reduction of silver ions to a colloid by Eriochrome Black T. J. Phys. Chem., 100, 1779–1785. DOI: 10.1021/jp951901a
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc17420d-a7a5-4d1f-9e31-92e387db6333
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.