PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

β-Glucan-Mediated Alleviation of NaCl Stress in Ocimum basilicum L. in Relation to the Response of Antioxidant Enzymes and Assessment DNA Marker

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salinity is one of the most important abiotic stresses which can negatively affect the plant metabolic processes in the world. This can impact the plant production, either for economic or sustenance benefits. The salinity stress can cause many physiological and biochemical changes in the plants. β-glucans are important polysaccharides, which are present in the cell walls of various cereal grains. They protect the plant responses and occur in plant suspensions. In this study, the researchers attempted to investigate various physiological mechanisms and determine the role of the β-glucans in the NaCl-mediated stress conditions on the Ocimum basilicum L. seedlings. For this purpose, they carried out an experiment for assessing various shoot and root parameters along with the antioxidant enzyme activities, proline levels and the ISSR markers. When the seedlings were exposed to the NaCl stress conditions, they showed a significant decrease in the growth parameters and an increase in the antioxidant and proline levels compared to the control seedlings grown under normal saline conditions. On the other hand, the β-glucantreated seeds, when grown under the saline stress conditions, showed better growth parameters as well as high antioxidant enzyme activities and proline levels, compared to the control and NaCl-treated plants. Furthermore, a PCR analysis was carried out using the ISSR-marker technology, which could help in evaluating the DNA fingerprints and genetic variations in the plants. The results indicated that the exogenous application of the β-glucans could protect the antioxidant enzyme activities and protect the plants against the salinity stresses, without affecting the DNA-markers without affecting the genetic variations and could be a better choice for use in DNA-markers.
Rocznik
Strony
90--99
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Biology, College of Education for Pure Sciences, Al Muthanna University, Samawah, 66001, Iraq
Bibliografia
  • 1. Abdelaziz, M.N., Xuan, T.D., Mekawy, A.M.M., Wang, H., Khanh, T.D., 2018. Relationship of salinity tolerance to Na+ exclusion, proline accumulation, and antioxidant enzyme activity in rice seedlings. Agriculture Article 8, 1–12.
  • 2. Alhasnawi, A.N., 2019. Role of proline in plant stress tolerance : A mini review. Research on Crops 20, 223–229.
  • 3. Alhasnawi, A.N., 2017. In vitro induction of local rice varieties, MRQ74 & MR269 plant salt tolerance and assessment of variability through biochemical & molecular marker. Universiti Kebangsaan Malaysia.
  • 4. Alhasnawi, A.N., Kadhimi, A.A., Isahak, A., Ashraf, M.F., Doni, F., Mohamad, A., Mohtar, W., Yusoff, W., Radziah, C., Mohd, C., 2015. Application of Inter Simple Sequence Repeat (ISSR) for Detecting Genetic Analysis in Rice (Oryza sativa L.). Journal of Pure and Applied Microbiology 9, 1091–1101.
  • 5. Alhasnawi, A.N., Mandal, A.M., Jasim, H.M., 2019. Using DNA Fingerprinting to detect the Genetic Relationships in Acacia by Inter-Simple Sequence Repeat Markers.pdf. Journal of Pure and Applied Microbiology 13, 281–288.
  • 6. Alhasnawi, A.N., Radziah, C.M.Z.C.H.E., Kadhimi, A.A., Isahak, A., Mohamad, A., 2016. Enhancement of antioxidant enzyme activities in rice callus by ascorbic acid under salinity stress. Biologia Plantarum 60, 783–787.
  • 7. Alhasnawi, A.N., Zain, C.R., Kadhimi, A.A., Isahak, A., Mohamad, A., Wan Yusoff, W.M., 2017. Relationship observed between salinity-tolerant callus cell lines and anatomical structure of Line 2 (Oryza sativa L.) indica under salinity stress. Biocatalysis and Agricultural Biotechnology 10, 367–378.
  • 8. Alhsanwi, A.N., Zain, C.R., Kadimi, A.A., Ishakb, A., Mohamad, A., Ashraf, M.F., Yusoff, W.., 2016. Applications of polysaccharides (β-glucan) for physiological and biochemical parameters for evaluation rice tolerance under salinity stress at seedling stage. Journal of Crop Science and Biotechnology 19, 353–362.
  • 9. Baldim, J.L., Silveira, J.G.F., Almeida, A.P., Carvalho, P.L.N., Soares, M.G., Rosa, W., Luiz, J.H.H., Schripsema, J., Chagas-Paula, D.A., 2018. The synergistic effects of volatile constituents of Ocimum basilicum against foodborne pathogens. Industrial Crops & Products 112, 821–829.
  • 10. Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205–207.
  • 11. Brindzová, L., Čertík, M., Rapta, P., Zalibera, M., Mikulajova, A., Takacsova, M., 2008. Antioxidant activity, β-glucan and lipid contents of oat varieties. Czech J. Food Sci. 26, 163–173.
  • 12. Cabo, S., Carvalho, A., Rocha, L., Martin, A., Lima-Brito, J., 2013. IRAP, REMAP and ISSR Fingerprinting in Newly Formed Hexaploid Tritordeum (X Tritordeum Ascherson et Graebner) and Respective Parental Species. Plant Molecular Biology Reporter 32, 761–770.
  • 13. Cakmak, I., Marschner, H., 1992. Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves. Plant Physiol. 98, 1222–1227.
  • 14. Delavari, M., Enteshari, S., Kalantari, K.M., 2014. Effects of Response of Ocimum basilicum to the interactive effect of salicylic acid and salinity stress. Iranian Journal of Plant Physiology 4, 983–990.
  • 15. Dos Santos, L.F., De Oliveira, E.J., Dos Santos Silva, A., De Carvalho, F.M., Costa, J.L., Pádua, J.G., 2011. ISSR markers as a tool for the assessment of genetic diversity in Passiflora. Biochemical Genetics 49, 540–554.
  • 16. Elhindi, K.M., El-Din, A.S., Elgorban, A.M., 2017. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences 24, 170–179.
  • 17. Faure, A.M., Münger, L.H., Nyström, L., 2012. Potential inhibitors of the ascorbate-induced β-glucan degradation. Food Chemistry 134, 55–63.
  • 18. Filip, S., 2017. Basil (Ocimum basilicum L.) a Source of Valuable Phytonutrients. International Journal of Clinical Nutrition & Dietetics 3, 1–5.
  • 19. Giannopolitis, C.N., Ries, S.K., 1977. Superoxide Dismutases.pdf. Plant Physiol. 59, 309–314.
  • 20. Gonzaga, M.L.C., Menezes, T.M.F., De Souza, J.R.R., Ricardo, N.M.P.S., Soares, S.D. a, 2013. Structural characterization of β glucans isolated from Agaricus blazei Murill using NMR and FTIR spectroscopy. Bioactive Carbohydrates and Dietary Fibre 2, 152–156.
  • 21. Hand, M.J., Taffouo, V.D., Nouck, A.E., Nyemene, K.P.J., Tonfack, L.B., Meguekam, T.L., Youmbi, E., 2017. Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Not Bot Horti Agrobo 45, 481–490.
  • 22. Haritha, G., Sudhakar, T., Chandra, D., Ram, T., Divya, B., Sarla, N., 2016. Informative ISSR Markers Help Identify Genetically Distinct Accessions of Oryza rufipogon in Yield Improvement. Rice Science 23, 225–241.
  • 23. Hassanpouraghdam, M.B., Gohari, G.R., Tabatabaei, S.J., Dadpour, M.R., Shirdel, M., 2011. NaCl salinity and Zn foliar application influence essential oil composition of basil (Ocimum basilicum L.). Acta agriculturae Slovenica 97, 93–98.
  • 24. Hoson, T., Nevins, D.J., 1989. , β-glucan -D-glucan antibodies inhibit auxin-induced cell elongation and changes in the Cell Wall of Zea Coleoptile Segments. Plant Physiol 90, 1353–1358.
  • 25. Inui, H., Yamaguchi, Y., Hirano, S., 1997. Elicitor actions of N-acetylchitooligosaccharides and laminarioligosaccharides for chitinase and L-phenylalanine ammonia-lyase induction in rice suspension culture. Bioscience, biotechnology, and biochemistry 61, 975–978.
  • 26. Jampeetong, A., Brix, H., 2009. Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquatic Botany 91, 181–186.
  • 27. Khalil, S.E., Aziz, N.G.A.E.-, Leila, B.H.A., Irrigation, F., Trees, W., 2010. Effect of water stress , ascorbic acid and spraying time on some morphological and biochemical composition of Ocimum basilicum plant. Journal of American Science 6, 33–44.
  • 28. Khaliq, S., Zafar, Z.U., Athar, H. ur R., Khaliq, R., 2014. Physiological and biochemical basis of salt tolerance in Ocimum basilicum L. Journal of Medicinal Plants Studies 2, 18–27.
  • 29. Kim, Y.S., Ke, F., Zhang, Q.Y., 2009. Effect of β-glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp. Fish and Shellfish Immunology 27, 336–340.
  • 30. Kofuji, K., Aoki, A., Tsubaki, K., Konishi, M., Isobe, T., Murata, Y., 2012. Antioxidant activity of β-glucan. ISRN pharmaceutics 2012, 1–5.
  • 31. Kordi, S., Saidi, M., Ghanbari, F., 2013. Induction of drought tolerance in sweet basil (Ocimum basilicum L.) by Salicylic Acid. International Journal of Agricultural and Food Research 2, 18–26.
  • 32. Laroche, C., Michaud, P., 2007. New developments and prospective applications for β (1,3) glucans. Recent Patents on Biotechnology 1, 59–73.
  • 33. Letters, R.B., 2012. Effects of long-term salt stress on antioxidant system , chlorophyll and proline contents in pea leaves. Romanian Biotechnological Letters 17, 7227–7236.
  • 34. Li, J.-T., Qiu, Z.-B., Zhang, X.-W., Wang, L.-S., 2011. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant 33, 835–842.
  • 35. Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science 7, 405–410.
  • 36. Mohamad, A., Alhasnawi, A.N., Kadhimi, A.A., Isahak, A., Yusoff, W.M.W., Che Radziah, Z.., 2017. DNA Isolation and optimization of ISSRPCR reaction system in Oryza sativa L. International Journal on Advanced Science, Engineering and Information Technology 7, 2088–5334.
  • 37. Mühling, K.H., 2003. Interaction of NaCl and Cd stress on compartmentation pattern of cations , antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance, Plant and Soi 253, 219–231.
  • 38. Qiu, Z., Guo, J., Zhu, A., Zhang, L., Zhang, M., 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety 104, 202–208.
  • 39. Reddy, M.P., Sarla, N., Siddiq, E.A., 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128, 9–17.
  • 40. Souza, I.G.B., Souza, V. a B., Lima, P.S.C., 2013. Molecular characterization of Platonia insignis Mart. (‘Bacurizeiro’) using inter simple sequence repeat (ISSR) markers. Molecular biology reports 40, 3835–45.
  • 41. Summart, J., Thanonkeo, P., Panichajakul, S., Prathepha, P., McManus, M.T., 2010. Effect of salt stress on growth , inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. African Journal of Biotechnology 9, 145–152.
  • 42. Williams, D.L., Lowman, D.W., Reale, M., Ensley, H.E., Vetvicka, V., Novak, M., 2013. Insights into the physicochemical characterization, chemistry, structure and synthesis of (1→3,1→6)-β-glucans., in: Vetvicka, V., Novak, M. (Eds.), Biology and Chemistry of Polysaccharides. Bentham e Books, pp. 29–82.
  • 43. Xu, Y., Rossi, F., Colica, G., Deng, S., Philippis, R. De, Chen, L., 2013. Use of cyanobacterial polysaccharides to promote shrub performances in desert soils a potential approach for the restoration of desertified areas. Biol Fertil Soils 49, 143–152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc126aad-3102-4a3f-9808-cf80657b4f66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.