Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of this article is to present selected research results in the field of optimization of energy cogeneration processes of heating systems based on biogas sources, in terms of the possibility of obtaining ecological and energy benefits in the municipal area. Design/methodology/approach: The considerations are a case study, including an analysis of the choice of the optimal variant of agricultural biogas construction in the Łobez Municipality in the Zachodniopomorskie Voivodeship from the point of view of both the substrate used in biogas and the proposed technological solutions. The subject matter focuses on comparing the estimated ecological effect of biogas with different powers and choosing the optimal model solution. The research process used secondary and statistical data and the selected comparative method to calculate the carbon dioxide emission reduction factor. Findings: The authors indicate which technology of obtaining energy should be dominant in the field of optimization of energy cogeneration processes of heating systems in Poland in areas dominated by agricultural economy. Research limitations/implications: The presented research concerns the assessment of one of the parameters (substrate used in biogas) affecting the optimization of biogas production. Future research in this area should focus on the assessment of other factors determining the validity of the discussed solutions in relation to the adopted state policy in the field of development of renewable energy sources and agricultural economy. Practical implications: The results of the research are the first approach to indicate the government and regional administration the type of energy that may form the basis of the future strategy of changes in the field of energy cogeneration of heating systems in municipal and agricultural areas in Poland. Social implications: The description of the agricultural biogas model, which served as an example, can be helpful in the process of identifying benefits not only for the environment but also as an element stimulating economic and social development at the local and regional level. Originality/value: An experimental research approach may be helpful in understanding the essence of optimization of energy congregation processes of heating systems based on biogas sources in selected areas of Poland.
Rocznik
Tom
Strony
59--71
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Department of Regional and European Studies, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Żołnierska 47, 71-210 Szczecin
autor
- Department of Regional and European Studies, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Żołnierska 47, 71-210 Szczecin
- Wojciech.Lewicki@zut.edu.pl
autor
- Department of Regional and European Studies, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Żołnierska 47, 71-210 Szczecin
Bibliografia
- 1. Pietrzak, M.B., Igliński, B., Kujawski, W., Iwański, P. (2021). Energy Transition in Poland - Assessment of the Renewable Energy Sector. Energies, 14(8), pp. 2046-2047. doi: 10.3390/en14082046.
- 2. Tucki, K., Orynycz, O., Wasiak, A., Świć, A., Dybaś, W. (2019). Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management. Energies, 12, 12(5), pp. 839-841. doi: 10.3390/en12050839839.
- 3. Polityka Energetyczna Polski do 2030 roku (2009). Warsaw: Ministerstwo Gospodarki.
- 4. Janiszewska, D.A. (2019) Diversification of energy production and consumption in European Union countries. Energy Policy - Energy Policy Journal, 22(2), pp. 5-20. doi: 10.33223/epj/109338.
- 5. Krajowy Plan Działania w Zakresie Energii ze Źródeł Odnawialnych (2010). Warszawa: Ministerstwo Gospodarki.
- 6. Drożdż, W., Mróz-Malik, O., Kopiczko, M. (2021). The Future of the Polish Energy Mix in the Context of Social Expectations. Energies, 14, pp. 5341. doi: 10.3390/en14175341.
- 7. Central Statistical Office, Available online http://www.stat.gov.pl, 02.02.2022.
- 8. Igliński, B., Piechota, G., Iwański, P., Skarzatek, M., Pilarski, G. (2020). 15 Years of the Polish agricultural biogas plants: their history, current status, biogas potential and perspectives. Clean. Techn. Environ. Policy, 22, pp. 281-307. doi: 10.1007/s10098-020-01812-3.
- 9. Szymańska, D., Lewandowska, A. (2015). Biogas power plants in Poland - structure, capacity, and special distribution. Sustainability, 7(12), pp. 16801-16819. doi: 10.3390/su71215846.
- 10. Brewery, A. (2020) Agricultural Biogas - An Important Element in the Circular and Low-Carbon Development in Poland. Energies, 13(7), pp. 1733.doi: 10.3390/en13071733.
- 11. Piwowar, A., Dzikuć, M. (2016). Outline of the economic and technical problems associated with the co-combustion of biomass in Poland. Renew. Sustain. Energy. Rev., 54, pp. 415-420. doi: 10.1016/j.rser.2015.10.044.
- 12. Ignaciuk, W., Sulewski, P. (2021). Conditions of Development of the Agricultural Biogas Industry in Poland in the Context of Historical Experiences and Challenges of the European Green Deal. Zagadnienia Ekonomiki Rolnej, 368(3), pp. 55-77. doi: 10.30858/zer/140413.
- 13. Śleszyński, P., Nowak, M., Brelik, A., Mickiewicz, B., Oleszczyk, N. (2021). Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy Energies, 14(7), pp. 1935-1937. doi:10.3390/en14071935.
- 14. Piwowar, A., Dzikuć, M. (2019). Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. Energies, 12(18), pp. 3558. doi: 10.3390/en12183558.
- 15. Koryś, K.A., Latawiec, A.E., Grotkiewicz, K., Kuboń, M. (2019). The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability, 11(22), pp.6515. doi:10.3390/su11226515.
- 16. Scarlat, N., Dallemand, J.-F., Fahl, F. (2018). Biogas: developments and perspectives in Europe. Renew. Energy, 129, pp. 457-472. doi: 10.1016/j.renene.2018.03.006.
- 17. Baral, K.R., Jégo, G., Amon, B., Bol, R., Chantigny, M.H., Olesen, H.E., Petersen, S.O. (2018). Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation. Agricultural Systems, 166, pp. 26-35. doi: 10.1016/j.agsy.2018.07.009.
- 18. Masłoń, A., Czarnota, J., Szaja, A., Szulżyk-Cieplak, J., Łagód, G. (2020). The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies, 13(22) pp. 6056. doi: 10.3390/en13226056.
- 19. Wiater, J., Horysz, M. (2017). Organic waste as a substrate in biogas production, Journal of Ecological Engineering, 18, 5, pp. 226-234. doi: 10.12911/22998993/74629.
- 20. Tufaner, F., Avşar, A., Gönüllü, M.T. (2017). Modeling of biogas production from cattle manure with co-digestion of different organic wastes using an artificial neural network. Clean Technol Environ Policy, 9(19), pp. 2255-2264. doi:10.1007/s10098-017-1413-2.
- 21. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (2009).
- 22. Operational Programme Infrastructure and Environment 2014-2020 Methodology for calculating the carbon dioxide emission reduction factor in sub-measure 1.6.1 OPIIA Priority axis I Reduction of the economy's emissivity Measure 1.6 Promotion of the use of high-efficiency cogeneration of heat and electricity based on the demand for useful heat Sub-measure 1.6.1 Sources of high-efficiency cogeneration (2014).
- 23. Wąs, A., Sulewski, P., Krupin, V., Popadynets, N., Malak-Rawlikowska, A., Szymańska, M., Skorokhod, I., Wysokiński, M. (2020). The Potential of Agricultural Biogas Production in Ukraine-Impact on GHG Emissions and Energy Production. Energies, 13(21), pp. 5755-5757. doi: 10.3390/en13215755.
- 24. Bielski, S., Marks-Bielska, R., Zielińska-Chmielewska, A., Romaneckas, K., Šarauskis, E. (2021). Importance of Agriculture in Creating Energy Security - A Case Study of Poland. Energies, 14(9), pp. 2465-2467. doi:10.3390/en14092465.
- 25. Alatzas, S., Moustakas K., Malamis D., Vakalis S. (2019). Biomass potential from agricultural waste for energetic utilization in Greece. Energies, 12(6), pp. 1095-1097. doi:10.3390/en12061095.
- 26. Kozłowski, K., Dach, J., Lewicki, A., Cieślik, M., Czekała, W., Janczak, D. & Brzoski, M. (2018). Laboratory simulation of an agricultural biogas plant start-up. Chemical Engineering & Technology, 41, pp. 711-716. doi:10.1002/ceat.201700390.
- 27. Dach, J., Kula, D., Woźniak, E. (2021). The exploitation of innovative biogas plant by group of farmers. International Conference Legal and Economic Perspectives of Energy Cooperatives’ Development in Poland and other countries. Poznań.
- 28. Antoine, M., Mazzegaand, E., Mathieu, C. (ed.) (2019). Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy'. Études de l 'Ifri, Ifri.
- 29. Studium wykonalności inwestycji - Budowa instalacji o mocy 1,2 MW do wytwarzania z biogazu energii elektrycznej i cieplnej, w mieście Łobez. Biogazownia Łobez sp. z o.o., Łobez (2018).
- 30. Low Carbon Economy Plan for the Łobez Commune(2016). Łobez. Available online from http://www.lobez.pl, 20.02.2022.
- 31. Energy Regulatory Office, Available online from http://www.ure.gov.pl, 20.02.2022.
- 32. Theuerl, S., Klang, J., Prochnow, A. (2019). Process Disturbances in Agricultural Biogas Production - Causes, Mechanisms and Effects on the Biogas Microbiome: A Review. Energies, 12(3), 365. doi: 10.3390/en12030365.
- 33. Johnson, C., Boersma, T.T. (2013). Energy (in) security in Poland the case of shale gas. Energy Policy, 53(C), pp. 389-399. doi: 10.1016/j.enpol.2012.10.068.
- 34. Petersen, B., Snapp, S. (2015). What is sustainable intensification? Views from experts. Land Use Policy, 46, pp. 1-10. doi: 10.1016/j.landusepol.2015.02.002.
- 35. Ribeiro, A.P., Rode, M. (2019). Residual biomass energy potential: perspectives in a peripheral region in Brazil. Clean. Technol. Environ. Policy, 21(4), pp. 733-744. doi: 10.1007/s10098-019-01675-3.
- 36. Zhang, C., Qiu, L. (2018). Comprehensive sustainability of a biogas-linked agro-ecosystem: a case study in China. Clean. Technol. Environ. Policy, 20, pp. 1847-1860. doi: 10.1007/s10098-018-1580-9.
- 37. Lauer, M., Leprich, U., Thrän, D. (2020). Economic assessment of flexible power generation from biogas plants in Germany's future electricity system. Renew Energy, 146, pp. 1471-1485, doi: 10.1016/j.renene.2019.06.163.
- 38. Lipiński, A.J., Lipiński, S., Kowalkowski, P. (2018). Utilization of post-production waste from fruit processing for energy purposes: analysis of Polish potential and case study. Journal of Material Cyclesand Waste Management, 20(3), pp. 1878-1883. doi:10.1007/ s10163-018-0729-2.
- 39. Mamica, Ł., Mazur-Bubak, M., Wróbel-Rotter, R. (2022). Can Biogas Plants Become a Significant Part of the New Polish Energy Deal? Business Opportunities for Poland's Biogas Industry. Sustainability, 14(3), pp. 1614-1615, doi:10.3390/su14031614.
- 40. Liu, J., Wang, J., Cardinal, J. (2022). Evolution and reform of UK electricity market, Renewable and Sustainable Energy Reviews, 161, pp. 2-3. doi:10.1016/j.rser.2022.112317.
- 41. Tomaszewski, K. (2020). The Polish road to the new European Green Deal - challenges and threats to the national energy policy. Energy Policy Journal, 23(2), pp. 5-18. doi:10.33223/epj/123411.
- 42. Niemczyk, J., Sus, A., Bielińska-Dusza, E., Trzaska, R., Organa, M. (2022). Strategies of European Energy Producers: Directions of Evolution. Energies 15(2), pp. 609-610. doi:10.3390/en15020609.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc115a67-728e-4fae-a294-058242252bab