PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and simulation of an air conditioning project in a hospital based on computational fluid dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Plan i symulacja projektu klimatyzacji w szpitalu, na podstawie obliczeniowej mechaniki płynów
Języki publikacji
EN
Abstrakty
EN
This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD) software was used to simulate indoor air distribution. The analysis and comparison of the simulation results suggested that increasing the area of air supply outlets and the number of return air inlets would not only increase the area of unidirectional flow region in main flow region, but also avoid an indoor vortex and turbulivity of the operating area. Based on the summary of heat and humidity management methods, the system operation mode and relevant parameter technologies as well as the characteristics of the thermal-humidity load of the operating room were analyzed and compiled. According to the load value and parameters of indoor design obtained after our calculations, the airflow distribution of purifying the air-conditioning system in a clean operating room was designed and checked. The research results suggested that the application of a secondary return air system in the summer could reduce energy consumption and be consistent with the concept of primary humidity control. This study analyzed the feasibility and energy conservation properties of cleaning air-conditioning technology in operating rooms, proposed some solutions to the problem, and performed a feasible simulation, which provides a reference for practical engineering.
PL
Przedmiotem tego badania była czysta sala operacyjna. Zastosowano technologię czystej klimatyzacji. Obciążenie chłodnicze czystej klimatyzacji w okresie letnim zostało obliczone przy użyciu praktycznej metody obciążenia chłodniczego klimatyzacji oraz oprogramowania służącego do obliczania zużycia energii. Wyniki obliczeń zostały porównane i przeanalizowane. Model rozprowadzania powietrza był symulowany za pomocą Airpak 3.0, a symulowane wyniki zostały przeanalizowane.
Rocznik
Strony
23--38
Opis fizyczny
Bibliogr. 23 poz., il., tab.
Twórcy
autor
  • The First Affiliated Hospital of Wenzhou, Wenzhou, Zhejiang, China
autor
  • The First Affiliated Hospital of Wenzhou, Wenzhou, Zhejiang, China
autor
  • The First Affiliated Hospital of Wenzhou, Wenzhou, Zhejiang, China
Bibliografia
  • 1. Z. Ren, W. Song, X. Peng, et al. "The Characteristics of Science and Technology Policy Research from the Perspective of the Characteristics of Science and Technology Activity", Journal of Service Science & Management, 08(3): 365-371, 2015.
  • 2. E. Zimmermann, S. Derrough, D. Locatelli, et al. "Results of potential exposure assessments during the maintenance and cleanout of deposition equipment", Journal of Nanoparticle Research, 14(10): 1-17, 2012.
  • 3. P. Pérez-López, S. González-García, C. Allewaert, et al. "Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum", Science of the Total Environment, 466-467C (1): 991-1002, 2014.
  • 4. J. J. Carter, B. C. Cochran, J. D. Reifschneider. Saving energy in lab exhaust systems. Ashrae Journal, 53(6): 26-36, 2011.
  • 5. J. Gao, X. D. Li, F. S. Gao. "Coincidence and entrainment of air jets of the stratifiedair conditioning in large spaces", Journal of Harbin Institute of Technology, 132(2): 145-155, 2004.
  • 6. X. X. Man, F. S. Gao. Stratified air conditioning air flow simulation and concentration field analysis of high and large clean plant. HVAC, 34 (8): 94-98, 2004.
  • 7. C. L. Lin, H. Tawhai Merryn, E. A. Hoffman. "Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs', Wiley Interdisciplinary Reviews Systems Biology & Medicine, 5(5): 643-655, 2012.
  • 8. E. Vardoulakis, D. Karamanis, A. Fotiadi, et al. "The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands", Solar Energy, 94(4): 128-144, 2013.
  • 9. Q. Y. Ma, S. X. Zhao, L. Huang, et al. "Numerical Simulation of UFAD Conditioned Space under Summer Part-Load Conditions". Advanced Materials Research, 960-961: 625-630, 2014.
  • 10. X. F. Dong, W. Xiao, B. Zhao. "The simulation and energy saving analysis of CFD simulation and energy saving analysis for tall and clean workshop", HVAC, 42 (11): 58-62, 2012.
  • 11. N. Cai, C. Huang. "A Study of Cooling Load Calculation of Stratified Air Conditioning System for Large Space Based on the Simultaneously Solving Model", Applied Mechanics & Materials, 672-674: 1755-1761, 2014.
  • 12. J. Taweekun, V. Akvanich. "The Experiment and Simulation of Solid Desiccant Dehumidification for Air-Conditioning System in a Tropical Humid Climate", Engineering, 05(1): 146-153, 2013.
  • 13. G. Zhang, J. Xiong, H. Gao, et al. "Hospital Operating Room Clean Air-Conditioning System: Design and Application", Journal of Environment & Health, 27(9): 814-817, 2010.
  • 14. A. H. Zaji, H. Bonakdari. "Efficient methods for prediction of velocity fields in open channel junctions based on the artifical neural network", Engineering Applications of Computational Fluid Mechanics, 9(1): 220-232, 2015.
  • 15. A. Ali, H. Kalisch. "On the Formulation of Mass, Momentum and Energy Conservation in the KdV Equation", Acta Applicandae Mathematicae, 133(1): 1-19, 2014.
  • 16. A. Krasiński, M. Urban. "The Results of Analysis of Deep Excavation Walls Using Two Different Methods of Calculation", Archives of Civil Engineering, 57(1):59-72, 2011.
  • 17. N. Cui, J. C. Xie, W. Y. Bian, et al. "Study on the Relationship between Indoor Air Quality and Children's Health in Beijing", Applied Mechanics and Materials, 368-370(1): 525-530, 2013.
  • 18. D. Biau. "Laminar-turbulent separatrix in a boundary layer flow", Physics of Fluids, 24(3): 263-268, 2012.
  • 19. F. R. Menter, Y. Egorov. "The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description", Flow Turbulence & Combustion, 85(1): 113-138, 2010.
  • 20. Z. Kang, Y. Zhang, H. Fan, et al. "Numerical Simulation of Coughed Droplets in the Air-Conditioning Room", Procedia Engineering, 121:114-121, 2015.
  • 21. C. J. Keylock, G. Constantinescu, R. J. Hardy. "The application of computational fluid dynamics to natural river channels: Eddy resolving versus mean flow approaches", Geomorphology, 179(2):1-20, 2012.
  • 22. L. Xia, P. Zhang, R. Z. Wang. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model", Energy, 35(5):2022-2032, 2010.
  • 23. P. H. Yoon, T. Umeda. Nonlinear turbulence theory and simulation of Buneman instability. Physics of Plasmas, 17(17):112317-112317, 2010.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc10f719-ed36-4d5f-826f-0824a23d75f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.