PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of controlled molecular dynamic flow in a channel with non-equal inlet and outlet cross-sectional areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermo-fluid properties are required for numerical modeling of nano/micro devices. These properties are mostly obtained from the results of molecular dynamics (MD) simulations. Therefore, efforts have been made to develop methods for numerical evaluation of fluid properties such as pressure and velocity. One of the main challenges faced by numerical simulations is to simulate steady molecular flow in channels with non-equal inlet and outlet boundaries. Currently, periodic boundary conditions at the inlet and outlet boundaries are an inevitable condition in many steady flow molecular dynamics simulations. As a result, a nano-channel with different cross sectional areas at the inlet and outlet could not be simulated easily. Here, a method is presented to generate and control steady molecular flow in a nano-channel with different cross sectional areas at the inlet and outlet. The presented method has been applied to a converging-diverging channel, and its performance has been studied through qualitative and quantitative representation of flow properties.
Rocznik
Strony
1141--1153
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
  • Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • 1. Allen M.P., Tildesley D.J., 1987, Computer Simulation of Liquids, Oxford, New York
  • 2. Bao F., Huang Y., Zhang Y., Lin J., 2015, Investigation of pressure-driven gas flows in nanoscale channels using molecular dynamics simulation, Microfluid Nanofluid, 18, 1075-1084
  • 3. Branam R.D., Micci M.M., 2009, Comparison of wall models for the molecular dynamics simulation of microflows, Nanoscale and Microscale Thermophysical Engineering, 13, 1-12
  • 4. Darbandi M., Abbassi H.R., Khaledi Alidusti R., Sabouri M., 2011, Molecular Dynamics Simulation of Nano Channel as Nanopumps, ICNMM, Edmonton, Alberta, Canada
  • 5. Fan X.J., Nhan P.T., Ng T.Y„ Xu D., 2002, Molecular dynamics simulation of a liquid in a complex nano channel flow, Physics of Fluids, 14, 3, 1146-1153
  • 6. Han M., 2008, Thermally-driven nanoscale pump by molecular dynamics simulation, Journal of Mechanical Science and Technology, 22, 157-165
  • 7. Hanasaki I., Nakatani A., 2006, Fluidized piston model for molecular dynamics simulations of hydrodynamics flow, Modelling and Simulation in Materials Science and Engineering, 14, S9-S20
  • 8. Hasheminasab S.M., Karimian S.M.H., 2015, New indirect method for calculation of flow forces in molecular dynamics simulation, Journal of Molecular Liquids, 206, 183-189
  • 9. Huang C., Choi P.Y.K., Nandakumar K., Kostiuk L.W., 2006, Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates, Journal of Chemical Physics, 124, 234701
  • 10. Huang C., Nandakumar K., Kwok D.Y., 2004, Non-equilibrium injection flow in a nanometer capillary channel, ICMENS’04, 374-378
  • 11. Kamali R., Kharazmi A., 2011, Molecular dynamics simulation of surface roughness effects on nanoscale flows, International Journal of Thermal Science, 50, 3, 226-232
  • 12. Karimian S.M.H., Izadi S., 2013, Bin size determination for the measurement of mean flow velocity in molecular dynamics simulation, International Journal for Numerical Methods in Fluids, 71, 7, 930-938
  • 13. Karimian S.M.H., Izadi S., Barati Farimani A., 2011, A study on the measurement of mean velocity and its convergence in molecular dynamics simulations, International Journal for Numerical Methods in Fluids, 67, 12, 2130-2140
  • 14. Karimian S.M.H., Namvar S., 2012, Implementation of SMC averaging method in a channeled molecular flow of liquids and gases, Journal of Physics: Conference Series, 362, 01, 2029
  • 15. Karniadakis G.E., Beskok A., Aluru N., 2002, Micro Flows and Nano Flows, Springer, New York, 641-648
  • 16. Kim B.H., Beskok A., Cagin T., 2010, Viscous heating in nanoscale shear driven liquid flows, Microfluid Nanofluid, 9, 31-40
  • 17. Koplik J., Banavar J., Willemsen J., 1988, Molecular dynamics of Poiseuille flow and moving contact lines, Physical Review Letters, 60, 1282-1285
  • 18. Koplik J., Banavar J.R., Willemsen J.F., 1989, Molecular dynamics of fluid flow at solid surfaces, Physics of Fluids A, 1, 781-794
  • 19. Leach A.R., 1999, Molecular Modeling: Principles and Applications, Longman
  • 20. Li J., Liao D., Yip S., 1998, Coupling continuum to molecular-dynamics simulation: reflecting particle method and the field estimator, Physical Review E, 57, 6, 7259-7267
  • 21. Liu C., Li Z., 2010, Molecular dynamics simulation of composite nanochannels as nanopumps driven by symmetric temperature gradients, Physical Review Letters, 105, 174501
  • 22. Mi X.B., Chwang A. T., 2003, Molecular dynamics simulations of nanochannel flows at low Reynolds numbers, Molecules, 8, 193-206
  • 23. Nagayama G., Cheng P., 2004, Effects of interface wettability on microscale flow by molecular dynamics simulation, International Journal of Heat and Mass Transfer, 47, 501-513
  • 24. Najafi H.R., Karimian S.M.H., 2016, Analysis of pressure behavior in a temperature controlled molecular dynamic flow, Journal of Theoretical and Applied Mechanics, 54, 3, 881-892
  • 25. Namvar S., Karimian S.M.H., 2012, Detailed investigation on the effect of wall spring stiffness on velocity profile in molecular dynamics simulation, Journal of Physics: Conference Series, 362, 01, 2039
  • 26. Priezjev N.V., 2007, Effect of surface roughness on rate-dependent slip in simple fluids, Journal of Chemical Physics, 127, 144708
  • 27. Rapaport D.C., 2004, The Art of Molecular Dynamics Simulation, Cambridge University Press
  • 28. Sadus R.J., 2002, Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation, Elsevier
  • 29. Sofos F., Karakasidas T.E., Liakopoulos A., 2009, Non-equilibrium molecular dynamics investigation of parameters affecting planar nanochannel flows, Contemporary Engineering Sciences, 2, 6, 283-298
  • 30. Stillinger F.H., Rahman A., 1974, Improved simulation of liquids water by molecular dynamics, Journal of Chemical Physics, 60, 1545-1557
  • 31. Sun M., Ebner C., 1992, Molecular-dynamics simulation of compressible fluid flow in two-dimensional channels, Physical Review A, 46, 4813
  • 32. Travis K.P., Evans D.J., 1997, Molecular spin in a fluid undergoing Poiseille flow, Physical Review E, 55, 1566-1572
  • 33. Travis K.P., Gubbins K.E., 2000, Poiseuille flow of Lennard-Jones fluids in narrow slit pores, Journal of Chemical Physics, 112, 1984-1994
  • 34. Tysanner M.W., Garcia A.L., 2004, Measurement bias of fluid velocity in molecular simulations, Journal of Computational Physics, 196, 173-183
  • 35. Tysanner M.W., Garcia A.L., 2005, Non-equilibrium behavior of equilibrium reservoirs in molecular simulations, International Journal of Numerical Methods in Fluids, 2050, 1-12
  • 36. Verlet L., 1967, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 159, 98
  • 37. Zhang Z.Q., Zhang H.W., Ye H.F., 2009, Pressure-driven flow in parallel-plate nanochannels, Applied Physics Letters, 95, 154101
  • 38. Ziarani A.S., Mohamad A.A., 2005, A molecular dynamics study of perturbed Poiseulle flow in a nanochannel, Microfluid Nanofluid, 2, 12-20
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc105394-cf9c-44a7-bfb5-e40ebde1f32c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.