PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Soft Soil Samples Quality on the Compressibility and Undrained Shear Strength – Seven Lessons Learned From the Vistula Marshlands

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
EN
Abstrakty
EN
This technical article presents the influence of sample quality on the compressibility parameters and undrained shear strength (cu) of soft soils from the Vistula Marshlands. The analysis covers: (1) quality of soft soil according to three criteria: void ratio (Δe/e0 index), volumetric strain (Δɛv) and Cr/Cc ratio; (2) influence of storage time on quality; (3) influence of sample quality on undrained shear strength (cu), and (4) reliability of compression and undrained shear strength parameters estimation. The sample quality of three different soft soils (peat, organic clays, and organic silts) was investigated using dataset of geotechnical investigations from the Vistula Marshlands. The reliability of oedometer tests and compressibility parameters determination was shown. Different undrained shear strength estimates (from lab and field tests) were juxtaposed with sample quality. In situ estimates of undrained shear strength were compared with results of triaxial tests and direct simple shear test on reconstituted samples as well as SHANSEP estimates. The results of research are grouped in seven lessons. The most important outcomes are: (1) the quality of samples is at best moderate or poor and there is no significant influence of storage time on sample quality, (2) regardless of testing method, the undrained shear strength natural variability of the Vistula Marshlands soft soils is between 20% and 50% depending on deposit depth and soil type, (3) the most accurate estimation of undrained shear strength can be obtained from field vane test (FVT) while unconsolidated, undrained compression (UUC) triaxial tests should be avoided, (4) SHANSEP approach can be considered as a valuable estimate of cu (next to the FVTs), which additionally allows in relatively easy way to establish lower and upper bounds of cu.
Wydawca
Rocznik
Strony
262--281
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering; Department of Geotechnical and Hydraulic Engineering; Gdańsk University of Technology (GUT), Gdańsk, Poland
Bibliografia
  • [1] Amundsen, H. A., & Thakur, V. (2019). Storage Duration Effects on Soft Clay Samples. Geotechnical Testing Journal, 42(4), 20170426. https://doi.org/10.1520/GTJ20170426
  • [2] Andresen, A., & Kolstad, P. (1979). The NGI 54-mm samplers for undisturbed sampling of clays and representative sampling of coarser materials. Proceedings of International Symposium on Soil Sampling, 13–21.
  • [3] ASTM D2435. (2020). Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International. https://doi.org/10.1520/D2435_D2435M-11R20
  • [4] ASTM D2573. (2015). Standard Test Method for Field Vane Shear Test in Saturated Fine-Grained Soils. ASTM International.
  • [5] ASTM D6528. (2017). Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. ASTM International. https://doi.org/10.1520/D6528-17
  • [6] Baligh, M. M. (1985). Strain path method. Journal of Geotechnical Engineering, 111(9), 1108–1136.
  • [7] Beesley, M. E. W., & Vardanega, P. J. (2020). Parameter variability of undrained shear strength and strain using a database of reconstituted soil tests. Canadian Geotechnical Journal, 57(8), 1247–1255. https://doi.org/10.1139/cgj-2019-0424
  • [8] Boone, S. J. (2010). A critical reappraisal of “preconsolidation pressure” interpretations using the oedometer test. Canadian Geotechnical Journal, 47(3), 281–296. https://doi.org/10.1139/T09-093
  • [9] Bowles, J. E. (1984). Physical and geotechnical properties of soils. McGraw-Hill.
  • [10] Casagrande, A. (1932). Structure of Clay and Its Importance in Foundation Engineering. Journal of Boston Society of Civil Engineers, 19(14), 168–209.
  • [11] Chandler, R. J. (1988). The in-situ measurement of the undrained shear strength of clays using the field vane. In Vane shear strength testing in soils: Field and laboratory studies (pp. 13–44). ASTM International.
  • [12] DeJong, J. T., Krage, C. P., Albin, B. M., & DeGroot, D. J. (2018). Work-Based Framework for Sample Quality Evaluation of Low Plasticity Soils. Journal of Geotechnical and Geoenvironmental Engineering, 144(10), 04018074. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001941
  • [13] Di Buò, B., Selänpää, J., Länsivaara, T. T., & D’Ignazio, M. (2019). Evaluation of sample quality from different sampling methods in Finnish soft sensitive clays. Canadian Geotechnical Journal, 56(8), 1154–1168. https://doi.org/10.1139/cgj-2018-0066
  • [14] Donohue, S., & Long, M. (2010). Assessment of sample quality in soft clay using shear wave velocity and suction measurements. Géotechnique, 60(11), 883–889. https://doi.org/10.1680/geot.8.T.007.3741
  • [15] Gołębiewska, A. (1983). Vane testing in peat. 1, 113–117.
  • [16] Gwizdała, K., Kłos, J., Kurałowicz, Z., & Tejchman, A. (1983). Charakterystyka wybranych cech gruntów żuławskich. Archiwum Hydrotechniki, 2, 227–242.
  • [17] Hight, D. W. (2003). Sampling Effects in Soft Clay: An Update on Ladd and Lambe (1963). 86–121. https://doi.org/10.1061/40659(2003)4
  • [18] Holtz, R. D., Jamiolkowski, M. B., & Lancellotta, R. (1986). Lessons From Oedometer Tests on High Quality Samples. Journal of Geotechnical Engineering, 112(8), 768–776. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(768)
  • [19] Jamiolkowski, M., Ladd, C. C., Germaine, J. T., & Lancellotta, R. (1985). New developments in field and laboratory testing of soil. 57–153.
  • [20] Karlsrud, K., & Hernandez-Martinez, F. G. (2013). Strength and deformation properties of Norwegian clays from laboratory tests on high-quality block samples. Canadian Geotechnical Journal, 50(12), 1273–1293. https://doi.org/10.1139/cgj-2013-0298
  • [21] Karlsson, M., Emdal, A., & Dijkstra, J. (2016). Consequences of sample disturbance when predicting long-term settlements in soft clay. Canadian Geotechnical Journal, 53(12), 1965–1977. https://doi.org/10.1139/cgj-2016-0129
  • [22] Kempfert, H.-G., & Gebreselassie, B. (2006). Excavations and foundations in soft soils. Springer-Verlag.
  • [23] Klobe, B. (1992). Eindimensionale Kompresssion und Konsolidation und darauf basierende Verfahren zur Setzungsprognose (Phd Thesis). Department of Civil Engineering, Geo and Environmental Sciences, Karlsruhe Institute of Technology.
  • [24] Konkol, J., & Balachowski, L. (2021). Statistical evaluation of physical and index properties of Vistula Marshlands deltaic soft soils. IOP Conference Series: Earth and Environmental Science, 727(1), 012004. https://doi.org/10.1088/1755-1315/727/1/012004
  • [25] Konkol, J., Międlarz, K., & Bałachowski, L. (2019). Geotechnical characterization of soft soil deposits in Northern Poland. Engineering Geology, 259, 105187. https://doi.org/10.1016/j.enggeo.2019.105187
  • [26] Konstadinou, M., Bezuijen, A., Greeuw, G., Zwanenburg, C., Van Essen, H. M., & Voogt, L. (2021). The Influence of Apparatus Stiffness on the Results of Cyclic Direct Simple Shear Tests on Dense Sand. Geotechnical Testing Journal, 44(5), 20190471. https://doi.org/10.1520/GTJ20190471
  • [27] Koppula, S. (1981). Statistical Estimation of Compression Index. Geotechnical Testing Journal, 4(2), 68. https://doi.org/10.1520/GTJ10768J
  • [28] Kulhawy, F. H., & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design. Electric Power Research Institute.
  • [29] La Rochelle, P., & Lefebvre, G. (1971). Sampling Disturbance in Champlain Clays. In B. Gordon & C. Crawford (Eds.), Sampling of Soil and Rock (pp. 143–143–21). ASTM International. https://doi.org/10.1520/STP26665S
  • [30] La Rochelle, P., Sarrailh, J., Tavenas, F., Roy, M., & Leroueil, S. (1981). Causes of sampling disturbance and design of a new sampler for sensitive soils. Canadian Geotechnical Journal, 18(1), 52–66. https://doi.org/10.1139/t81-006
  • [31] Ladd, C. C. (1991). Stability Evaluation during Staged Construction. Journal of Geotechnical Engineering, 117(4), 540–615. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:4(540)
  • [32] Ladd, C. C., & DeGroot, D. J. (2003). Recommended practice for soft ground site characterization: Arthur Casagrande Lecture. Proceedings of 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, 1, 1–59.
  • [33] Landon, M. M., DeGroot, D. J., & Sheahan, T. C. (2007). Nondestructive Sample Quality Assessment of a Soft Clay Using Shear Wave Velocity. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 424–432. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(424)
  • [34] Lim, G. T., Pineda, J., Boukpeti, N., Carraro, J. A. H., & Fourie, A. (2019). Effects of sampling disturbance in geotechnical design. Canadian Geotechnical Journal, 56(2), 275–289. https://doi.org/10.1139/cgj-2018-0016
  • [35] Lunne, T., Berre, T., Andersen, K. H., Strandvik, S., & Sjursen, M. (2006). Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays. Canadian Geotechnical Journal, 43(7), 726–750. https://doi.org/10.1139/t06-040
  • [36] Lunne, T., Berre, T., & Strandvik, S. (1997). Sample disturbance effects in soft low plastic Norwegian clay. 81–102.
  • [37] Mayne, P. W. (2006). In-situ test calibrations for evaluating soil parameters. In K. Phoon, D. Hight, S. Leroueil, & T. Tan (Eds.), Characterisation and Engineering Properties of Natural Soils. Taylor & Francis. https://doi.org/10.1201/NOE0415426916.ch2
  • [38] Mayne, P. W., & Peuchen, J. (2018). Evaluation of CPTU Nkt cone factor for undrained strength of clays. Cone Penetration Testing 2018. 4th International Symposium on Cone Penetration Testing (CPT’18), Delft.
  • [39] Mesri, G., & Feng, T.-W. (2019). Constant rate of strain consolidation testing of soft clays and fibrous peats. Canadian Geotechnical Journal, 56(10), 1526–1533. https://doi.org/10.1139/cgj-2018-0259
  • [40] Mesri, G., & Godlewski, P. M. (1977). Time- and stress-compressibility interrelationship. Journal of Geotechnical and Geoenvironmental Engineering, 103(5), 417–430.
  • [41] Nagaraj, T. S., & Srinivasa Murthy, B. R. (1986). A critical reappraisal of compression index equations. Géotechnique, 36(1), 27–32. https://doi.org/10.1680/geot.1986.36.1.27
  • [42] Nishida, Y. (1956). A Brief Note on Compression Index of Soil. Journal of the Soil Mechanics and Foundations Division, 82(3), 1027–14. https://doi.org/10.1061/JSFEAQ.0000015
  • [43] O’Kelly, B. C. (2006). Compression and consolidation anisotropy of some soft soils. Geotechnical and Geological Engineering, 24(6), 1715–1728. https://doi.org/10.1007/s10706-005-5760-0
  • [44] Pineda, J. A., Liu, X. F., & Sloan, S. W. (2016). Effects of tube sampling in soft clay: A microstructural insight. Géotechnique, 66(12), 969–983. https://doi.org/10.1680/jgeot.15.P.217
  • [45] PN EN ISO 17892-5. (2017). Geotechnical investigation and testing—Laboratory testing of soil—Part 5: Incremental loading oedometer test.
  • [46] Rendon-Herrero, O. (1980). Universal Compression Index Equation. Journal of the Geotechnical Engineering Division, 106(11), 1179–1200. https://doi.org/10.1061/AJGEB6.0001058
  • [47] Rétháti, L. (1988). Probabilistic Solutions in Geotechnics. Elsevier.
  • [48] Robertson, P. K. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system—An update. Canadian Geotechnical Journal, 53(12), 1910–1927. https://doi.org/10.1139/cgj-2016-0044
  • [49] Roy, M., & Leblanc, A. (1988). Factors Affecting the Measurements and Interpretation of the Vane Strength in Soft Sensitive Clays. In A. Richards (Ed.), Vane Shear Strength Testing in Soils: Field and Laboratory Studies (pp. 117–117–12). ASTM International. https://doi.org/10.1520/STP10325S
  • [50] Roy, M., Tremblay, M., Tavenas, F., & Rochelle, P. L. (1982). Development of pore pressure in quasi-static penetration tests in sensitive clay. Canadian Geotechnical Journal, 19(1), 124–138. https://doi.org/10.1139/t82-015
  • [51] Santagata, M. C., & Germaine, J. T. (2002). Sampling Disturbance Effects in Normally Consolidated Clays. Journal of Geotechnical and Geoenvironmental Engineering, 128(12), 997–1006. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(997)
  • [52] Scherzinger, T. (1991). Materialverhalten von Seetonen-Ergebnisse von Laboruntersuchungen und ihre Bedeutung für das Bauen in weichem Untergrund (Phd Thesis). Institute of Soil Mechanics and Rock Mechanics.
  • [53] Shogaki, T., & Kaneko, M. (1994). Effects of Sample Disturbance on Strength and Consolidation Parameters of Soft Clay. Soils and Foundations, 34(3), 1–10. https://doi.org/10.3208/sandf1972.34.3_1
  • [54] Skempton, A. W., & Jones, O. T. (1944). Notes on the compressibility of clays. Quarterly Journal of the Geological Society, 100(1–4), 119–135. https://doi.org/10.1144/GSL.JGS.1944.100.01-04.08
  • [55] Skempton, A. W., & Sowa, V. A. (1963). The Behaviour of Saturated Clays During Sampling and Testing. Géotechnique, 13(4), 269–290. https://doi.org/10.1680/geot.1963.13.4.269
  • [56] Stępkowska, E. T. (1986). Parametry geotechniczne gruntów z terenu żuław wiślanych (CPBR6.4/15.8.7). Institute of Hydroengineering.
  • [57] Tanaka, H. (2000). Sample Quality of Cohesive Soils: Lessons from Three Sites, Ariake, Bothkennar and Drammen. Soils and Foundations, 40(4), 57–74. https://doi.org/10.3208/sandf.40.4_57
  • [58] Tanaka, H., Ritoh, F., & Omukai, N. (2002). Quality of samples retrieved from great depth and its influence on consolidation properties. Canadian Geotechnical Journal, 39(6), 1288–1301. https://doi.org/10.1139/t02-064
  • [59] Tanaka, H., Sharma, P., Tsuchida, T., & Tanaka, M. (1996). Comparative Study on Sample Quality Using Several Types of Samplers. Soils and Foundations, 36(2), 57–68. https://doi.org/10.3208/sandf.36.2_57
  • [60] Teh, C. I., & Houlsby, G. T. (1991). An analytical study of the cone penetration test in clay. Géotechnique, 41(1), 17–34. https://doi.org/10.1680/geot.1991.41.1.17
  • [61] Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice (Third Edition). John Wiley & Sons Inc.
  • [62] Tsuchida, T. (2000). Evaluation of Undrained Shear Strength of Soft Clay with Consideration of Sample Quality. Soils and Foundations, 40(3), 29–42. https://doi.org/10.3208/sandf.40.3_29
  • [63] Viana da Fonseca, A., & Pineda, J. (2017). Getting high-quality samples in ‘sensitive’ soils for advanced laboratory tests. Innovative Infrastructure Solutions, 2(1), 34. https://doi.org/10.1007/s41062-017-0086-3
  • [64] Wroth, C. P., & Wood, D. M. (1978). The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal, 15(2), 137–145. https://doi.org/10.1139/t78-014
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc104570-6cb2-4b71-b500-89c5d3c82666
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.