Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article concerns the analysis of the dimensional accuracy of point clouds reproducing spatial objects made by photographic scanning in the Agisoft Metashape program. Due to the lack of available scientific literature describing the results of research on the accuracy of this type of objects created in the Metashape program, analyzes were carried out to determine it. In order to demonstrate the possibilities of wide application of point clouds also in opinion-making practice, three examples of objects with dimensions typical for the area of road accident research are described: a tread trace, a car and a fragment of a road. The obtained point clouds were compared with real objects in terms of dimensional accuracy. It was found that the method is able to provide very good accuracy, with a margin that meets the requirements of typical accident analysis.
Wydawca
Rocznik
Tom
Strony
121--132
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland
- Institute of Forensic Research, Ul. Westerplatte 9, 31-033 Cracow, Poland
autor
- Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland
- Institute of Forensic Research, Ul. Westerplatte 9, 31-033 Cracow, Poland
autor
- Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland
Bibliografia
- 1. Kullgren, A., Lie, A., Tingvall, C. Photogrammetry for documentation of vehicle deformations – A tool in a system for advanced accident data collection, Accident Analysis & Prevention, 1994, 26(1), 99–106.
- 2. Mikulec, R., Motl, J., Tmejová, T., Svatý, Z. Skanowanie 3D w badaniach wypadków drogowych. Paragraf na Drodze, 2022, 43–56. https://doi.org/10.4467/15053520PnD.22.022.17418
- 3. Moyano, J., Nieto-Julián, J.E., Bienvenido-Huertas, D., Marín-García, D. Validation of close-range photogrammetry for architectural and archaeological heritage: Analysis of point density and 3D Mesh Geometry. Remote Sens. 2020, 12, 3571. https://doi.org/10.3390/rs12213571
- 4. Moravcová, P., Bucsuházy, K., Zůvala, R., Bilík, M. and Bradáč, A. The comparison of 3D and 2D measurement techniques used for the analysis of vehicle deformation, In Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2020), 2020, 195–202.
- 5. Stuart, A. 3D Remote Sensing in Accident Scene Reconstruction. EVU Conference, Dubrovnik. 2018, 133–139.
- 6. Svat´y, Z. Use of close-range photogrammetry in forensic science, XIIIth Youth Symposium on Experimental Solid Mechanics, June 29th – July 2nd, Czech Republic, 2014, 120–123.
- 7. Wach, W. Skanowanie Obiektów Przestrzennych Metodą Fotogrametrii Bliskiego Zasięgu. W: J. Wierciński (red.). Paragraf na Drodze, (numer specjalny). Wydawnictwo Instytutu Ekspertyz Sądowych. 2017, 311–320.
- 8. Arnold, E.D. Use of Photogrammetry as a Tool for Accident Investigation and Reconstruction: A Review of the Literature and State of the Practice. 2007.
- 9. Manafifard, M. and Behnamiam, R. Determination of Car Deformation due to the Car Crash using Close-Range Photogrammetry, 2024 10th International Conference on Artificial Intelligence and Robotics (QICAR), Qazvin, Iran, Islamic Republic of, 2024, 232–235, doi: 10.1109/QICAR61538.2024.10496635.
- 10. Kanun, E., Kanun, G.M., and Yakaret, M. 3D modeling of car parts by photogrammetric methods: Example of brake discs, Mersin Photogrammetry Journal, 2022, 4(1), 7–13.
- 11. Fraser, C., Hanley, H., and Cronk, S. Close-range photogrammetry for accident reconstruction. Optical 3D Measurements VII, (Gruen, A./Kahmen, H, Eds) 2, 2005, 115–123.
- 12. Fraser, C. Accident reconstruction via digital closerange photogrammetry. In American Society for Photogrammetry and Remote Sensing Annual Conference. 2006, May.
- 13. Liba, N., Metsoja, K., Järve, I. Miljan, J. Making 3D models using close-range photogrammetry: Comparison of cameras and software. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2019, 19, 561–568. https://doi.org/10.5593/sgem2019/2.2/S10.069
- 14. Agisoft PhotoScan Software. Agisoft Metashape. Available online: https://www.agisoft.com/ (accessed on 30 January 2023).
- 15. Tyagi, D., Mishra, V., Verma, H. Elevation Data Acquisition Accuracy Assessment for ESRI Drone2Map, Agisoft Metashape, and Pix4Dmapper UAV Photogrammetry Software. E: Jain, K., Mishra, V., Pradhan, B. (red.) Proceedings of UASG 2021: Wings 4 Sustainability. UASG 2021. Lecture Notes in Civil Engineering, 2023, (304), 121–131. Springer.
- 16. Verykokou, S., Soile, S., Bourexis, F., Tokmakidis, P., Tokmakidis, K., Ioannidis, C. A comparative analysis of different software packages for 3D modelling of complex geometries. E: Ioannides, M., Fink, E., Cantoni, L., Champion, E. (Eds.) Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2020. Lecture Notes in Computer Science, 2021, (12642), 228–240.
- 17. Coyle, F. 2008. Digital close range photogrammetry in motor vehicle accident reconstruction. Technological University Dublin. doi:10.21427/D7K59M.
- 18. Bovik, A.C. (Ed.). Handbook of Image and Video Processing. Elsevier 2000.
- 19. İrem, Y., Kanun, E., Oğuz, G.M., Bozduman, Ş., Bilgi, S., Karataş, K. A Review on the Usability of Mobile Phone-based Close-Range Photogrammetry, Terrestrial Laser Scanning and UAVs in Traffic Accident Modeling. Intercontinental Geoinformation Days 1, 2020, 13–16.
- 20. Del Cesta, A., Del Cesta, F. Modern Scanning Technologies for Vehicular Accident Reconstruction. EVU Conference, Copenhagen. 2014, 219–229.
- 21. White, I. Using a 3D Point Cloud in the Analysis of CCTV Footage. EVU Conference, Dubrovnik. 2018, 275–285.
- 22. Brösdorf, K. Badania dotyczące procedury i dokładności pomiarów z wykorzystaniem fotogrametrii 3D. XVIII Konferencja Problemy Rekonstrukcji Wypadków Drogowych. 2023, 9–12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc05af35-7bc5-4257-b7eb-b28a3d8e2ec0