Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let (X, d) be a metric space. Let Y be an ordered Banach space with increasing norm. Let Φ be a separable linear family (a class) of Lipschitz functions defined on X and with values in Y . Let α(⋅) be a nondecreasing function mapping the interwal [0,+∞) into itself such that limt↓0 α(t) / t = 0. We say that a multifunction mapping X into Φ is Φ -α(⋅)-K-monotone if for all k in the interior of K, k ∈ Int K, there is a constant Ck > 0 such that for all φx ∈Γ (x),φy ∈Γ (y) we have φx(x) + φy(y) − φx(y) − φy(x) ≥K −Ckα(d(x, y))k.It is shown in the paper that under certain conditions on each Φ - Φα(⋅)-K-monotone multifunction is single-valued and continuous on a dense G δ-set..
Czasopismo
Rocznik
Tom
Strony
793--803
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Institute of Mathematics of the Polish Academy of Sciences Śniadeckich 8, 00-956 Warszawa, P.O.Box 21, Poland
Bibliografia
- 1. Asplund, E. (1968) Fréchet differentiability of convex functions, Acta Math., 121, 31–47.
- 2. Jahn, J. (1986) Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang, Frankfurt.
- 3. Jahn, J. (2004) Vector optimization, Springer Verlag, Berlin - Heidelberg - New York.
- 4. Kenderov, P.S. (1974) The set-valued monotone mappings are almost everywhere single-valued. C.R. Acad. Bulg. Sci. 27, 1173–1175.
- 5. Mazur, S. (1933) Über konvexe Menge in lineare normierte Raümen. Stud. Math. 4, 70–84.
- 6. Pallaschke, D., Rolewicz, S. (1997) Foundation of Mathematical Optimization. Mathematics and its Applications 388, Kluwer Academic Publishers, Dordrecht–Boston–London.
- 7. Peressini, A.L. (1967) Ordered Topological Vector Space. Harper & Row, New York.
- 8. Preiss, D., Zajíček, L. (1984) Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions. Proc. 11-th Winter School, Suppl. Rend. Circ. Mat di Palermo, ser II, 3, 219 - 223.
- 9. Przeworska-Rolewicz, D., Rolewicz, S. (2012) Φ-K–subgradients of vector–valued functions. Scientiae Mathematicae Japonica 76, 357–365.
- 10. Rolewicz, S. (1994) On Mazur Theorem for Lipschitz functions. Arch. Math. 63, 535–540.
- 11. Rolewicz, S. (1995a) Convexity versus linearity. In: P. Rusev, I. Dimovski, V. Kiryakova, eds.Transform Methods and Special Functions 94, Science Culture Technology Publishing, Singapore, 253–263.
- 12. Rolewicz, S. (1995b) On Φ-differentiability of functions over metric spaces. Topological Methods of Non-linear Analysis 5, 229–236.
- 13. Rolewicz, S. (1999a) On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions. Stud. Math. 133, 29–37.
- 14. Rolewicz, S. (1999b) On k-monotonicity property. In: Analiza systemowa i zarządzanie. Special volume dedicated to R. Kulikowski, Warsaw, 199–208.
- 15. Rolewicz, S. (2000) On α(⋅)-paraconvex and strongly α(⋅)–paraconvex functions. Control and Cybernetics 29, 367–377.
- 16. Rolewicz, S. (2001) On equivalence of Clarke, Dini, α(⋅)–subgradients and local α(⋅)–subgradients for strongly α(⋅)–paraconvex functions. Optimization 50, 353–360.
- 17. Rolewicz, S. (2001b) On uniformly approximate convex and strongly α(⋅)-para– convex functions. Control and Cybernetics 30, 323–330.
- 18. Rolewicz, S. (2002) On α(⋅)–monotone multifunctions and differentiability of strongly α(⋅)–paraconvex functions. Control and Cybernetics 31, 601–619.
- 19. Rolewicz, S. (2003) Φ–convex functions defined on metric spaces. Inter. Jour. of Math. Sci. 15, 2631–2652.
- 20. Rolewicz, S. (2011) Differentiability of strongly paraconvex vector–valued functions. Functiones et Approximatio 44, 273–277.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbf9ebf2-ff6b-4ce5-b69c-61daa9d03cba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.