PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanism of microstructure evolution and improved mechanical properties in two‑pass friction stir welding of titanium to aluminum

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the impact of an additional pass on microstructure evolution, mechanical properties, and intermetallic compound formation during friction stir welding of aluminum and titanium. The microstructure analysis showed a complex mechanical mixing in the weld nugget that contained particles of varying sizes and the formation of intermetallic compounds. The formation of intermetallic compounds, such as Al3Ti and AlTi, was detected through chemical analyses and X-ray diffraction techniques. The microstructure of aluminum in the weld nugget comprised equi-axed grains with different grain boundaries and low orientation deviation. Such features in the evolution of the microstructure are attributed to continuous dynamic recrystallization due to its high stacking fault energy and favorable welding temperature and strain-induced dislocation activities. The presence of particles in aluminum and their homogeneous distribution after the second pass promote the state-IV hardening rate. A model for inhomogeneous materials was introduced to explain the variation in tensile properties with the number of passes, and the model correlated well with the cross-sectional microstructure analysis, which showed five distinct zones across the weld nugget. The study concludes that the improvement in mechanical properties after the second pass can be attributed to the development of interlayers, a defect-free interface, mechanical mixing, and continuous dynamic recrystallization of aluminum in the weld nugget.
Rocznik
Strony
art. e231, 1--13
Opis fizyczny
Bibliogr. 31 poz., il., tab., wykr.
Twórcy
autor
  • South Dakota School of Mines and Technology, Rapid City, SD, USA
  • Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, India
Bibliografia
  • 1. Kumar S, Kar A. A review of solid-state additive manufacturing processes. Trans Indian Natl Acad Eng. 2021;6(4):955-73.
  • 2. Chen ZW, Yazdanian S. Microstructures in interface region and mechanical behaviours of friction stir lap Al6060 to Ti-6Al-4V welds. Mater Sci Eng, A. 2015;634:37-45.
  • 3. Wu A, Song Z, Nakata K, Liao J, Zhou L. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061. Mater Des. 2015;71:85-92.
  • 4. Ermakova SA, Eliseev AA, Kolubaev EA, Ermakov DV. Effect of ultrasound on the interface morphology and strength of Ti/Al alloy joints produced by friction stir welding. Phys Mesomech. 2023;26(1):100-6.
  • 5. Kar A, Suwas S, Kailas SV. Multi-length scale characterization of microstructure evolution and its consequence on mechanical properties in dissimilar friction stir welding of titanium to aluminum. Metallurg Mater Trans A. 2019;50:5153-73.
  • 6. Bang H, Bang H, Song H, Joo S. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti-6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Mater Des. 2013;51:544-51.
  • 7. Kar A, Kailas SV, Suwas S. Effect of mechanical mixing in dissimilar friction stir welding of aluminum to titanium with zinc interlayer. Trans Indian Inst Metals. 2019;72:1533-6.
  • 8. Li B, Zhang Z, Shen Y, Hu W, Luo L. Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties. Mater Des. 2014;53:838-48.
  • 9. Saleh M, Morisada Y, Ushioda K, Fujii H. Microstructural evolution of aluminium in dissimilar A1050/S45C FSW joints by Zn interlayer. Mater Sci Technol. 2023;1-8.
  • 10. Anbukkarasi R, Kailas SV. Role of third material (interlayer) on mechanical properties of the AA2024–copper joints carried out by friction stir welding (FSW). Trans Indian Inst Met. 2019;72(6):1603-6.
  • 11. Kar A, Curtis T, Jasthi BK, Lein W, McClelland Z, Crawford G. Mechanism of joint formation in dissimilar friction stir welding of aluminum to steel. In: Hovanski Y, Sato Y, Upadhyay P, Naumov AA, Kumar N, editors. Friction stir welding and processing XII. Cham: Springer; 2023. p. 237-45.
  • 12. Kar A, Singh K, Kumar L. Effect of tool rotational speed and mechanisms associated with microstructure evolution and intermetallics formation in friction stir welding of aluminum alloy to titanium alloy. J Mater Eng Perform. 2023.
  • 13. Solecka M, Mroz S, Petrzak P, Mania I, Szota P, Stefanik A, Garstka T, Paul H. Microstructure-related properties of explosively welded multi-layer Ti/Al composites after rolling and annealing. Arch Civ Mech Eng. 2022;23(1):39.
  • 14. Saravana Sundar A, Vishnu Vardhan T, Kumar A. Microstructural characterization of aluminium-titanium friction stir welds. Mater Today Proc. 2022;62:5845-9.
  • 15. Kar A, Suwas S, Kailas SV. Multi-length scale characterization of microstructure evolution and its consequence on mechanical properties in dissimilar friction stir welding of titanium to aluminum. Metall Mater Trans A. 2019;50:5153-73.
  • 16. Kumar A, Mugada KK. Investigation of material flow, microstructure evolution, and texture development in dissimilar friction stir welding of Al6061 to Ti6Al4V. Mater Today Commun. 2022;33:104424.
  • 17. Shankar S, Mehta KP, Chattopadhyaya S, Vilaca P. Dissimilar friction stir welding of Al to non-Al metallic materials: an overview. Mater Chem Phys. 2022;288: 126371.
  • 18. Kaushik P, Dwivedi DK. Influence of hook geometry on failure mechanism of Al6061-galvanized steel dissimilar FSW lap joint. Arch Civ Mech Eng. 2022;22(4):149.
  • 19. Jabłońska MB. Effect of the conversion of the plastic deformation work to heat on the behaviour of TWIP steels: a review. Arch Civ Mech Eng. 2023;23(2):135.
  • 20. Sujata M, Bhargava S, Suwas S, Sangal S. On kinetics of TiAl3 formation during reaction synthesis from solid Ti and liquid Al. J Mater Sci Lett. 2001;20(24):2207-9.
  • 21. Shehabeldeen TA, Yin Y, Ji X, Shen X, Zhang Z, Zhou J. Investigation of the microstructure, mechanical properties and fracture mechanisms of dissimilar friction stir welded aluminium/titanium joints. J Market Res. 2021;11:507-18.
  • 22. Kar A, Kailas SV, Suwas S. Formation sequence of intermetallics and kinetics of reaction layer growth during solid state reaction between titanium and aluminum. Materialia. 2020;11: 100702.
  • 23. Węglowski MS. Friction stir processing-state of the art. Arch Civ Mech Eng. 2018;18(1):114-29.
  • 24. Lv J, Zheng J-H, Yardley VA, Shi Z, Lin J. A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions. Metals. 2020;10(11):1516.
  • 25. Huang K, Loge RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548-74.
  • 26. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng, A. 1997;238(2):219-74.
  • 27. Chapter 4 Work hardening. In: Verlinden B, Driver J, Samajdar I, Doherty RD, editors. Pergamon: Pergamon Materials Series; 2007, p. 55-81.
  • 28. Pariyar A, Perugu CS, Toth LS, Kailas SV. Microstructure and mechanical behavior of polymer-derived in-situ ceramic reinforced lightweight aluminum matrix composite. J Alloy Compd. 2021;880: 160430.
  • 29. Kennedy AR, Wyatt SM. Characterising particle–matrix interfacial bonding in particulate Al–TiC MMCs produced by different methods. Compos A Appl Sci Manuf. 2001;32(3):555-9.
  • 30. Zuo J, Nakata T, Xu C, Xia YP, Shi HL, Wang XJ, Tang GZ, Gan WM, Maawad E, Fan GH, Kamado S, Geng L. Effect of grain boundary segregation on microstructure and mechanical properties of ultra-fine grained Mg–Al–Ca–Mn alloy wires. Mater SciEng, A. 2022;848: 143423.
  • 31. Kumar AP, Raj R, Kailas SV. A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater Des. 2015;85:626-34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbf92969-1688-43bb-a427-a28aba6e6399
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.