Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is analysing the correlation between the magnitude of the annual amplitude of seasonal changes in the coordinate components of GNSS reference stations and the height of the antenna mounting above the ground. For this purpose, the daily coordinate solutions of more than 500 GNSS reference stations that are part of the IGS (International GNSS Service) network were studied due to their distribution across the globe and long operating time, for some stations dating back to the 1990s. To minimize the impact of the tectonic plate movements authors adopted coordinates of reference stations inside each of the 21 tectonic plates. The coordinates in a topocentric reference frame were detrended in accordance with a linear model, with the objective of removing first-order trends. Subsequently, the seasonal yearly functions were calculated for each North, East and Up component. Finally, the amplitude of the seasonal factor for each station was determined. As a result of the analysis, the existence of annual amplitudes of coordinate changes was demonstrated for some of the stations, but no significant correlation between this phenomenon and the height of the GNSS antenna mounting was shown. In the case of the horizontal components, the majority of the station’s time series is characterized by the amplitude of seasonal function does not exceed 2.5–3 mm, and 5 mm for the vertical component.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e60, 2025
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Krakow, Krakow, Poland
- Lviv Polytechnic National University, Lviv, Ukraine
autor
- AGH University of Krakow, Krakow, Poland
autor
- AGH University of Krakow, Krakow, Poland
- Helwan University, Cairo, Egypt
autor
- AGH University of Krakow, Krakow, Poland
autor
- Kielce University of Technology, Kielce, Poland
- Central Office of Measures, Warsaw, Poland
autor
- University of Life Science in Lublin, Lublin, Poland
autor
- AGH University of Krakow, Krakow, Poland
Bibliografia
- 1. Amos, C.B., Audet, P., Hammond, W.C., Bürgmann, R., Johanson, I.A., Blewitt, G. (2014). Uplift and seismicity driven by groundwater depletion in central California. Nature, 509(7501), 483–486. DOI:10.1038/nature13275.
- 2. Argus, D.F., Fu, Y., and Landerer, F.W. (2014). Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys. Res. Lett.i, 41(6), 1971–1980. DOI:10.1002/2014GL059570.
- 3. Argus, D.F., Landerer, F.W., Wiese, D.N. et al. (2017). Sustained Water Loss in California’s Mountain Ranges During Severe Drought From 2012 to 2015 Inferred From GPS. J Geophys Res Solid Earth, 122(12). DOI: 10.1002/2017JB014424.
- 4. Blewitt, G., Hammond,W., and Kreemer, C. (2018). Harnessing the GPS Data Explosion for Interdisciplinary Science. EOS: Washington DC, 99. DOI: 10.1029/2018EO104623.
- 5. Bock, Y., and Melgar, D. (2016). Physical applications of GPS geodesy: A review. Reports Prog. Phys., 79(10), 106801. DOI: 10.1088/0034-4885/79/10/106801.
- 6. Borsa, A.A., Agnew, D.C., and Cayan, D.R. (2014). Ongoing drought-induced uplift in the western United States. Sci., 345(6204), 1587–1590. DOI: 10.1126/science.1260279.
- 7. Bos, M.S., Bastos, L., and Fernandes, R.M.S. (2010). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. J. Geodyn., 49(3-4), 205–209. DOI:10.1016/j.jog.2009.10.005.
- 8. Deng, L., Jiang, W., Chen, H. et al. (2017). Study of the effects on GPS coordinate time series caused by higher-order ionospheric corrections calculated using the DIPOLE model. Geod. Geodyn., 8(2), 111–119. DOI: 10.1016/j.geog.2017.01.004.
- 9. Fazilova, D. (2022). Uzbekistan’s coordinate system transformation from CS42 to WGS84 using distortion grid model. Geod. Geodyn., 13(1), 24–30. DOI: 10.1016/j.geog.2021.10.001.
- 10. Fazilova, D., Ehgamberdiev, S., and Kuzin, S. (2018). Application of time series modeling to a national reference frame realization. Geod. Geodyn., 9(4), 281–287. DOI: 10.1016/j.geog.2018.04.003.
- 11. Figurski, M., Szafranek, K., Bogusz, J. et al. (2010). Investigation on stability of mountainous eupos sites’ coordinates. Acta Geodyn. Geomater., 7(3), 263–274.
- 12. GoogleMapsPlatform (2024). Google for Developers.
- 13. Hanagan, C., and Mershon, B. (2024). Geoid Height Calculator.
- 14. He, X., Montillet, J.-P., Fernandes, R. et al. (2017). Review of current GPS methodologies for producing accurate time series and their error sources. J. Geodyn., 106, 12–29. DOI: 10.1016/j.jog.2017.01.004.
- 15. Hefty, J., Igondová, M., and Hrcka, M. (2005). Contribution of GPS permanent stations in central Europe to regional geo-kinematical investigations. Acta Geodyn. Geomater., 2(3), 69–73.
- 16. Kim., J., Bahadori, A., and Holt, W.E. (2021). Crustal Strain Patterns Associated With Normal, Drought, and Heavy Precipitation Years in California. J. Geophys. Res. Solid. Earth, 126(1). DOI: 10.1029/2020JB019560.
- 17. Krawczyk, K. (2023). Influence of reference stations on the stability of the geodetic control network during deformation determination in the area of Kadzielnia in Kielce. Rep. Geod. Geoinf., 115(1), 19–26. DOI: 10.2478/rgg-2023-0003.
- 18. Li, S., Shen, W., Pan, Y. et al. (2019). Surface seasonal mass changes and vertical crustal deformation in North China from GPS and GRACE measurements. Geod Geodyn., 11(1), 46–55. DOI:10.1016/j.geog.2019.05.002.
- 19. Liu, L., Khan, S.A., van Dam, T. et al. (2017). Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading. J. Geophys. Res. Solid Earth, 122(1), 677–691. DOI: 10.1002/2016JB013494.
- 20. Liu, X., Liang, H., and Ding, Z. (2022). Analyzing the Seasonal Deformation of the Sichuan–Yunnan Region Using GNSS, GRACE, and Precipitation Data. Appl. Sci., 12(11), 1–13. DOI: 10.3390/app12115675.
- 21. Maciuk, K. (2016). The study of seasonal changes of permanent stations coordinates based on weekly EPN solutions. Artif. Sat., 51(1), 1–18. DOI: 10.1515/arsa-2016-0001.
- 22. Magiera, W., V¯arna, I., Mitrofanovs, I. et al. (2022). Accuracy of Code GNSS Receivers under Various Conditions. Remote Sens., 14(11), 2615. DOI: 10.3390/rs14112615.
- 23. Michel, A., Santamaría-Gómez, A., Boy, J.-P. et al. (2021). Analysis of GNSS Displacements in Europe and Their Comparison with Hydrological Loading Models. Remote Sens., 13(22), 4523. DOI:10.3390/rs13224523.
- 24. Montillet, J., and Bos, M.S. (2020). Geodetic Time Series Analysis in Earth Sciences. Springer International Publishing: Cham.
- 25. Nagale, D.S., Kannaujiya, S., Gautam, P.K. et al. (2022). Impact assessment of the seasonal hydrological loading on geodetic movement and seismicity in Nepal Himalaya using GRACE and GNSS measurements. Geod. Geodyn., 13(5), 445–455. DOI: 10.1016/j.geog.2022.02.006.
- 26. Romagnoli, C., Zerbini, S., Lago, L. et al. (2003). Influence of soil consolidation and thermal expansion effects on height and gravity variations. J. Geodyn., 35(4–5), 521–539. DOI: 10.1016/S0264-3707(03)00012-7.
- 27. Savchuk, S., Doskich, S., Gołda, P. et al. (2023). The SeasonalVariations Analysis of Permanent GNSS Station Time Series in the Central-East of Europe. Remote Sens., 15(15), 1–18. DOI: 10.3390/rs15153858.
- 28. Savchyn, I. (2022). Establishing the correlation between changes of absolute rotation poles of major tectonic plates based on continuous GNSS stations data. Acta Geodyn. Geomater., 19(2), 167–176. DOI:10.13168/AGG.2022.0006.
- 29. Savcuk, S.G., and Tadêêv, O. (2020). Method for monitoring of modern reference systems in their relationship with geodynamics. In: Wybrane aspekty zabezpieczenia nawigacji lotniczej, 111–127.
- 30. Tekin Ünlütürk, N., and Dogan, U. (2024). The effect of seasonal variation on GNSS zenith tropospheric delay. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLVIII-4/W, 371–376. DOI: 10.5194/isprsarchives-XLVIII-4-W9-2024-371-2024.
- 31. Tiwari, A., Narayan, A.B., Devara, M. et al. (2018). Multi-sensor geodetic approach for landslide detection and monitoring. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 287–292.
- 32. Usifoh, S.E., Le, N., Männel, B. et al. (2024). The Impact of Surface Loading on GNSS Stations in Africa. Pure Appl. Geophys., 181(5), 1571–1588. DOI: 10.1007/s00024-024-03480-6.
- 33. V¯arna, I., Haritonova, D., and Balodis, J. (2019). Velocity fields of the Latvian CORS station daily coordinates for 2012-2017. Geophys., 54(1), 137–144.
- 34. Wahr, J., Khan, S.A., van Dam, T. et al. (2013). The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland. J. Geophys. Res. Solid Earth, 118(4), 1795–1806. DOI: 10.1002/jgrb.50104.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbf82107-a557-4cab-a453-214cf88f9fd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.