PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantum simulations of band-to-band tunnelling in a type-II broken-gap superlattice diode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
In recent years, type-II superlattice-based devices have completed the offer of the electronic industry in many areas of applications. Photodetection is one of them, especially in the midinfrared wavelength range. It is due to the unique feature of a superlattice material, which is a tuneable bandgap. It is also believed that the dark current of superlattice-based photodetectors is strongly suppressed due to the suppression of the band-to-band tunnelling current in a superlattice material. This argument relies, however, on a semi-classical approach that treats superlattice as a bulk material with effective parameters extracted from the k·p analysis. In the paper, a superlattice device is analysed on a quantum level: the nonequilibrium Green’s function method is applied to the two-band Hamiltonian of the InAs/GaSb superlattice p-i-n diode. The analysis concentrates on the band-to-band tunnelling with the aim to validate the correctness of a semi-classical description of the phenomenon. The results of calculations reveal that in a superlattice diode, the inter-band tunnelling occurs only for certain values of energy and in-plane momentum, for which electronic and hole sub-bands cross. The transitions occurring for vanishing in-plane momentum produce resonances in the current-voltage characteristics - the feature which was reported in a few experimental observations. This scenario is quite different from that occurring in bulk materials, where there is a range of energy-momentum pairs for which the band-to-band tunnelling takes place, and so current-voltage characteristics are free from any resonances. However, simulations show that, while not justified for a detailed analysis, the semi-classical description can be applied to superlattice-based devices for an ‘order of magnitude’ estimation of the band-to-band tunnelling current.
Twórcy
  • Department of Electronics Fundamentals, Rzeszow University of Technology, al. Powstańców Warszawy 12, Rzeszów 35-959, Poland
  • Department of Electronics Fundamentals, Rzeszow University of Technology, al. Powstańców Warszawy 12, Rzeszów 35-959, Poland
Bibliografia
  • [1] Rogalski, A., Martyniuk, P. & Kopytko, M. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl. Phys. Rev. 4, 031304 (2017). https://doi.org/10.1063/1.4999077
  • [2] Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices. 3rd Edition (John Wiley & Sons, 2007).
  • [3] Yang, Q. K., Fuchs, F., Schmitz, J. & Pletschen, W. Investigation of trap-assisted tunneling current in InAs/(GaIn) Sb superlattice long-wavelength photodiodes. Appl. Phys. Lett. 81, 4757-4759 (2002). https://doi.org/10.1063/1.1529306
  • [4] Martyniuk, P. et al. Modeling of midwavelength infrared InAs/GaSb type II superlattice detectors. Opt. Eng. 52, 061307 (2013). https://doi.org/10.1117/1.OE.52.6.061307
  • [5] Aifer, E. H. et al. W-structured type-II superlattice-based long-and very long wavelength infrared photodiodes. Proc. SPIE 5732, 259-272 (2005). https://doi.org/10.1117/12.597134
  • [6] Datta, S. Electronic Transport in Mesoscopic Systems. (Cambridge University Press, 1997).
  • [7] Keldysh, L. V. Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20, 1018-1026 (1965). http://jetp.ras.ru/cgi-bin/dn/e_020_04_1018.pdf
  • [8] Kadanoff, L. P. & Baym, G. Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems (CRC Press, Boca Raton. 2019). https://doi.org/10.1201/9780429493218
  • [9] Lake, R., Klimeck, G., Bowen, R. C. & Jovanovic, D. Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845-7869 (1997). https://doi.org/10.1063/1.365394
  • [10] Bowen, R. C., Klimeck, G. & Lake, R. K. Quantitative simulation of a resonant tunneling diode. J. Appl. Phys. 81, 3207-3213 (1997). https://doi.org/10.1063/1.364151
  • [11] Wang, J., Polizzi, E. & Lundstrom, M. A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96, 2192-2203 (2004). https://doi.org/10.1063/1.1769089
  • [12] Luisier, M. & Klimeck, G. Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107, 084507 (2010). https://doi.org/10.1063/1.3386521
  • [13] Pourfath, M. & Kosina, H. Computational study of carbon-based electronics. J. Comput. Electron. 8, 427-440 (2009). https://doi.org/10.1007/s10825-009-0285-z
  • [14] Steiger, S., Veprek, R. G. & Witzigmann, B. Electroluminescence From a Quantum-Well LED Using NEGF. in 2009 13th Inter-national Workshop on Computational Electronics 1-4 (IEEE 2009). http://doi.org/10.1109/IWCE.2009.5091112
  • [15] Shedbalkar, A., Andreev, Z. & Witzigmann, B. Simulation of an indium gallium nitride quantum well light‐emitting diode with the non‐equilibrium Green’s function method. Phys. Status Solidi B 253, 158-163 (2016). https://doi.org/10.1002/pssb.201552276
  • [16] Wang, R. et al. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes. Nanoscale 8, 13168-13173 (2016). https://doi.org/10.1039/C6NR02356H
  • [17] Henrickson, L. E. Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys. 91, 6273-6281 (2002). https://doi.org/10.1063/1.1473677
  • [18] Akhavan, N. D. et al. Superlattice barrier HgCdTe nBn infrared photodetectors: Validation of the effective mass approximation. IEEE Trans. Electron Devices 63, 4811-4818 (2016). http://doi.org/10.1109/TED.2016.2614677
  • [19] Naser, M. A., Deen, M. J. & Thompson, D. A. Photocurrent modeling and detectivity optimization in a resonant-tunneling quantum-dot infrared photodetector. IEEE J. Quantum Electron. 46, 849-859 (2010). http://doi.org/10.1109/JQE.2010.2040245
  • [20] Aeberhard, U. & Morf, R. H. Microscopic nonequilibrium theory of quantum well solar cells. Phys. Rev. B 77, 125343 (2008). https://doi.org/10.1103/PhysRevB.77.125343
  • [21] Aeberhard, U. Simulation of ultrathin solar cells beyond the limits of the semiclassical bulk picture. IEEE J. Photovolt. 6, 654-660 (2016). http://doi.org/10.1109/JPHOTOV.2016.2528405
  • [22] Cavassilas, N., Michelini, F. & Bescond, M. Modeling of nanoscale solar cells: The Green's function formalism. J. Renew. Sustain. Energy 6, 011203 (2014). https://doi.org/10.1063/1.4828366
  • [23] Kubis, T. et al. Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys. Rev. B 79, 195323 (2009). https://doi.org/10.1103/PhysRevB.79.195323
  • [24] Lee, S. C. & Wacker, A. Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B 66, 245314 (2002). https://doi.org/10.1103/PhysRevB.66.245314
  • [25] Hałdaś, G., Kolek, A. & Tralle, I. Modeling of mid-infrared quantum cascade laser by means of nonequilibrium Green’s functions. IEEE J. Quantum Electron. 47, 878-885 (2011). http://doi.org/10.1109/JQE.2011.2130512
  • [26] Grange, T. Contrasting influence of charged impurities on transport and gain in terahertz quantum cascade lasers. Phys. Rev. B 92, 241306(R) (2015). https://doi.org/10.1103/PhysRevB.92.241306
  • [27] Miloszewski, J. M. & Wartak, M. S. Semiconductor laser simulations using non-equilibrium Green’s functions. J. Appl. Phys. 111, 053104 (2012). https://doi.org/10.1063/1.3689324
  • [28] Grange, T. Electron transport in quantum wire superlattices. Phys. Rev. B 89, 165310 (2014). https://doi.org/10.1103/PhysRevB.89.165310
  • [29] Bertazzi, F., Tibaldi, A., Goano, M., Montoya, J. A. G. & Bellotti, E. Nonequilibrium Green’s function modeling of type-II superlattice detectors and its connection to semiclassical approaches. Phys. Rev. Appl. 14, 014083 (2020). https://doi.org/10.1103/PhysRevApplied.14.014083
  • [30] Bellotti, E. et al. Disorder-induced degradation of vertical carrier transport in strain-balanced Antimony-based superlattices. Phys. Rev. Appl. 16, 054028 (2021). https://doi.org/10.1103/PhysRevApplied.16.054028
  • [31] Aeberhard, U., Gonzalo, A. & Ulloa, J. M. Photocarrier extraction in GaAsSb/GaAsN type-II QW superlattice solar cells. Appl. Phys. Lett. 112, 213904 (2018). https://doi.org/10.1063/1.5030625
  • [32] Ilatikhameneh, H., Salazar, R. B., Klimeck, G., Rahman, R. & Appenzeller, J. From Fowler-Nordheim to nonequilibrium Green’s function modeling of tunneling. IEEE Trans. Electron Devices 63, 2871-2878 (2016). http://doi.org/10.1109/TED.2016.2565582
  • [33] Tibaldi, A. et al. Modeling infrared superlattice photodetectors: From nonequilibrium Green’s functions to quantum-corrected drift diffusion. Phys. Rev. Appl. 16, 044024 (2021). https://doi.org/10.1103/PhysRevApplied.16.044024
  • [34] Aeberhard, U. Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions. Phys. Rev. B 84, 035454 (2011). https://doi.org/10.1103/PhysRevB.84.035454
  • [35] Qiao, P.-F., Mou, S. & Chuang, S. L. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect. Opt. Express 20, 2319-2334 (2012). https://doi.org/10.1364/OE.20.002319
  • [36] Pan, A. & Chui, C. O. Modeling direct interband tunneling. I. Bulk semiconductors. J. Appl. Phys. 116, 054508 (2014). https://doi.org/10.1063/1.4891527
  • [37] Guan, X., Kim, D., Saraswat, K. C. & Wong, H. S. P. Complex band structures: From parabolic to elliptic approximation. IEEE Electron. Device Lett. 32, 1296-1298 (2011). http://doi.org/10.1109/LED.2011.2160143
  • [38] Leavitt, R. P. Empirical two-band model for quantum wells and superlattices in an electric field. Phys. Rev. B 44, 11270 (1991). https://doi.org/10.1103/PhysRevB.44.11270
  • [39] Sirtori, C., Capasso, F., Faist, J. & Scandolo, S. Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells. Phys. Rev. B 50, 8663 (1994). https://doi.org/10.1103/PhysRevB.50.8663
  • [40] Kolek, A. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian. Appl. Phys. Lett. 106, 181102 (2015). https://doi.org/10.1063/1.4919762
  • [41] Würfel, P. & Würfel, U. Physics of Solar Cells: From Basic Principles to Advanced Concepts (John Wiley & Sons, 2016).
  • [42] Wacker, A. Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357, 1-111 (2002). https://doi.org/10.1016/S0370-1573(01)00029-1
  • [43] Bürkle, L., Fuchs, F., Ahlswede, E., Pletschen, W. & Schmitz, J. Wannier-Stark localization in InAs/(GaIn) Sb superlattice diodes. Phys. Rev. B 64, 045315 (2001). https://doi.org/10.1103/PhysRevB.64.045315
  • [44] Hamaguchi, C. et al. Wannier-Stark localization in superlattices. Jpn J. Appl. Phys. 34, 4519 (1995). https://doi.org/10.1143/JJAP.34.4519
  • [45] Nguyen, B. M., Hoffman, D., Huang, E. K. W., Delaunay, P. Y. & Razeghi, M. Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K. Appl. Phys. Lett. 93, 123502 (2008). https://doi.org/10.1063/1.2978330
  • [46] Wei, Y. et al. Uncooled operation of type-II InAs/GaSb superlattice photodiodes in the midwavelength infrared range. Appl. Phys. Lett. 86, 233106 (2005). https://doi.org/10.1063/1.1947908
  • [47] Kazemi, A. et al. Mid-wavelength infrared unipolar nBp superlattice photodetector. Infrared Phys. Technol. 88, 114-118 (2018). https://doi.org/10.1016/j.infrared.2017.11.008
  • [48] Delmas, M. et al. Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector. J. Appl. Phys. 119, 174503 (2016). https://doi.org/10.1063/1.4948670
  • [49] Fuchs, F. et al. Magneto-optics of InAs/Ga1−xInxSb infrared superlattice diodes. Appl. Phys. Lett. 73, 3760-3762 (1998). https://doi.org/10.1063/1.122886
  • [50] Martyniuk, P. et al. Modeling of midwavelength infrared InAs/GaSb type II superlattice detectors. Opt. Eng. 52, 061307 (2013). https://doi.org/10.1117/1.OE.52.6.061307
  • [51] Szmulowicz, F., Haugan, H. J. & Brown, G. J. Analysis of (110) indium arsenide–gallium antimonide superlattices for infrared detection. J. Appl. Phys. 104, 074505 (2008). https://doi.org/10.1063/1.2990003
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbf77f42-22c8-4d4e-a035-47bfd1a93e36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.