PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of Sound Insulation Through Double-Panel Structure by Using Hybrid Local Resonator Array

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present one approach to improve the soundproofing performance of the double-panel structure (DPS) in the entire audible frequencies, in which two kinds of local resonances, the breathing-type resonance and the Helmholtz resonance, are combined. The thin ring resonator row and slit-type resonator (Helmholtz resonator) row are inserted between two panels of DPS together. Overlapping of the band gaps due to the individual resonances gives a wide and high band gap of sound transmission in the low frequency range. At the same time, the Bragg-type band gap is created by the structural periodicity of the scatterers in the high audible frequency range. In addition, the number of scatterer rows and the filling factor are investigated with regard to the sound insulation of DPS with sonic crystals (SCs). Consequently, the hybrid SC has the potential of increasing the soundproofing performance of DPS in the audible frequency range above 1 kHz by about 15 dB on average compared to DPS filled only with glass wool between two panels, while decreasing the total thickness and mass compared to the counterparts with the other type of local resonant sonic crystal.
Rocznik
Strony
63--70
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Institute of Acoustics, Department of Physics, Kim Il Sung University Pyongyang, Democratic People’s Republic of Korea
  • Institute of Acoustics, Department of Physics, Kim Il Sung University Pyongyang, Democratic People’s Republic of Korea
  • Institute of Acoustics, Department of Physics, Kim Il Sung University Pyongyang, Democratic People’s Republic of Korea
Bibliografia
  • 1. Bies D.A., Hansen C.H. (1980), Flow resistance information for acoustical design, Applied Acoustics, 13(5): 357-391, doi: 10.1016/0003-682X(80)90002-X.
  • 2. Brillouin L. (1946), Wave Propagation in Periodic Structures, 2nd ed., Dover Publications Inc.
  • 3. Cavalieri T., Cebrecos A., Groby J.-P., Chaufour C., Romero-García V. (2019), Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation: Application to train noise reduction, Applied Acoustics, 146: 1-8, doi: 10.1016/j.apacoust.2018.10.020.
  • 4. Chalmers L., Elford D.P., Kusmartsev F.V., Swallowe G.M. (2009), Acoustic band gap formation in two-dimensional locally resonant sonic crystals comprised of Helmholtz resonators, International Journal of Modern Physics B, 23(20n21): 4234-4243, doi: 10.1142/S0217979209063390.
  • 5. Chen Y.-Y., Ye Z. (2001), Theoretical analysis of acoustic bands in two-dimensional periodic arrays, Physical Review E, 64: 036616, doi: 10.1103/PhysRevE.64.036616.
  • 6. Delany M.E., Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3: 105-116, doi: 10.1016/0003-682X(70)90031-9.
  • 7. Elford D.P., Chalmers L., Kusmartsev F.V., Swallowe G.M. (2011), Matryoshka locally resonant sonic crystal, The Journal of the Acoustical Society of America, 130(5): 2746-2755, doi: 10.1121/1.3643818.
  • 8. Fuster-Garcia E., Romero-García V., Sánchez-Pérez J.V., García-Raffi L.M. (2007), Targeted band gap creation using mixed sonic crystal arrays including resonators and rigid scatterers, Applied Physics Letter, 90(24): 244104, doi: 10.1063/1.2748853.
  • 9. Gulia P., Gupta A. (2018), Enhancing the sound transmission loss through acoustic double panel using sonic crystal and porous material, The Journal of the Acoustical Society of America, 144(3): 1435-1442, doi: 10.1121/1.5054296.
  • 10. Gulia P., Gupta A. (2019), Sound attenuation in triple panel using locally resonant sonic crystal and porous material, Applied Acoustics, 156: 113-119, doi: 10.1016/j.apacoust.2019.07.012.
  • 11. Hirsekorn M., Delsanto P.P., Batra N.K., Matic P. (2004), Modelling and simulation of acoustic wave propagation in locally resonant sonic materials, Ultrasonics, 42(1–9): 231-235, doi: 10.1016/j.ultras.2004.01.014.
  • 12. Kim M.-J. (2019), Numerical study for increasement of low frequency sound insulation of double-panel structure using sonic crystals with distributed Helmholtz resonators, International Journal of Modern Physics B, 33(14): 1950138, doi: 10.1142/S0217979219501388.
  • 13. Kim M.-J., Rim C.-G., Won K.-S. (2021), Broadening low-frequency band gap of double-panel structure using locally resonant sonic crystal comprised of slot-type Helmholtz resonators, Archives of Acoustics, 46(2): 335-340, doi: 10.24425/aoa.2021.136587.
  • 14. Kyrnkin A., Umnova O., Chong Y.B.A., Taherzadeh S., Attenborough K. (2010), Predictions and measurements of sound transmission through a periodic array of elastic shells in air, The Journal of the Acoustical Society of America, 128(6): 3496-3506, doi: 10.1121/1.3506342.
  • 15. Linton C.M., Evans D.V. (1990), The interaction of waves with arrays of vertical circular cylinders, Journal of Fluid Mechanics, 215: 549-569, doi: 10.1017/S0022112090002750.
  • 16. Martínez-Sala R., Rubio C., Garcia-Raffi L.M., Sánchez-Pérez J.V., Sánchez-Pérez E.A., Llinares J. (2006), Control of noise by trees arranged like sonic crystals, Journal of Sound and Vibration, 291(1–2): 100-106, doi: 10.1016/j.jsv.2005.05.030.
  • 17. Martínez-Sala R., Sancho J., Sánchez J.V., Gómez V., Llinares J., Meseguer F. (1995), Sound attenuation by sculpture, Nature, 378: 241, doi: 10.1038/378241a0.
  • 18. Movchan A.B., Guenneau S. (2004), Split-ring resonators and localized modes, Physical Review B, 70: 125116, doi: 10.1103/PhysRevB.70.125116.
  • 19. Qian D. (2018),Wave propagation in a LRPC composite double panel structure with periodically attached pillars and etched holes, Archives of Acoustics, 43(4): 717-725, doi: 10.24425/aoa.2018.125165.
  • 20. Romero-García V., Garcia-Raffi L.M., Sánchez-Perez J.V. (2011), Evanescent waves and deaf bands in sonic crystals, American Institute of Physics Advances, 1: 041601, doi: 10.1063/1.3675801.
  • 21. Sainidou R., Djafari-Rouhani B., Pennec Y., Vasseur J.O. (2006), Locally resonant phononic crystals made of hollow spheres or cylinders, Physical Review B, 73(2): 024302, doi: 10.1103/PhysRevB.73.024302.
  • 22. Sánchez-Dehesa J., Garcia-Chocano V.M., Torrent D., Cervera F., Cabrera S. (2011), Noise control by sonic crystal barriers made of recycled material, The Journal of the Acoustical Society of America, 129(3): 1173-1183, doi: 10.1121/1.3531815.
  • 23. Sanchez-Perez J.V., Rubio C., Martinez-Sala R., Sanchez-Grandia R., Gomez V. (2002), Acoustic barriers based on periodic arrays of scatterers, Applied Physics Letters, 81: 5240-5242, doi: 10.1063/1.1533112.
  • 24. Sohn C.H., Park J.H. (2011), A comparative study on acoustic damping induced by half-wave, quarter-wave and Helmholtz resonators, Aerospace Science and Technology, 15(8): 606-614, doi: 10.1016/j.ast.2010.12.004.
  • 25. Umnova O., Attenborough K., Linton C.M. (2006), Effects of porous covering on sound attenuation by periodic arrays of cylinders, The Journal of the Acoustical Society of America, 119(1): 278-284, doi: 10.1121/1.2133715.
  • 26. Vasseur J.O., Deymier P.A., Djafari-Rouhani B., Pennec Y., Hladky-Hennion A-C. (2008), Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates, Physical Review B, 77(8): 085415, doi: 10.1103/PhysRevB.77.085415.
  • 27. Wu L.-Y., Chen L.-W., Wu M.-L. (2008), The nondiffractive wave propagation in the sonic crystal consisting of rectangular rods with a slit, Journal of Physics: Condensed Matter, 20: 295229, doi: 10.1088/0953-8984/20/29/295229.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbf05636-7a52-4c9c-b8d0-b24b45df6a74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.