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Abstract. In this paper, we investigate the processes of eigenvalues and eigenvectors of
a symmetric matrix valued process Xt, where Xt is the solution of a general SDE driven
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1. INTRODUCTION

Random Matrix Theory is an active research area of modern Mathematics with input
from Mathematical and Theoretical Physics, Mathematical Analysis and Probability.
Now we will talk about the origins of random matrix theory in mathematical statistics,
common knowledge out of the 1928 paper of Wishart on correlation matrices. The real
start of the field is usually attributed to highly influential papers by Eugene Wigner
in the 1950’s motivated by applications in Nuclear Physics [1].

Recently Graczyk and Malecki in 2013 [5] derived, in a general context, a system
of SDEs for the eigenvalues and the eigenvectors for a solution Xt valued in the space
of symmetric n × n matrices, of an SDE driven by a Brownian motion matrix of
dimension n× n. Under some conditions on the SDE satisfied by Xt, they established
the existence and the uniqueness of the stochastic differential equations of eigenvalues
and eigenvectors and shown that the eigenvalues never collide.

In recent decades, the theory and methodology of nonlinear expectation have
been well developed and received much attention in some application fields such as
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finance, risk measure and control. A typical example of the nonlinear expectation,
called G-expectation was introduced by Peng [7]. Under this G-expectation framework
a new type of Brownian motion called G-Brownian motion was constructed and the
related stochastic calculus was established.

The aim of this paper is to bring together the notion of random matrices and
G-stochastic calculus to study SDEs of eigenvalues and eigenvectors for a matrix
process. Namely, we consider the following general G-SDE

dXt = g(Xt)dBth(Xt) + h(Xt)dBTt g(Xt) + a(Xt)dt+ c(Xt)d 〈B〉t ,

where Bt is a G-Brownian motion matrix of dimension n× n, the matrix stochastic
process Xt takes values in the space of symmetric n × n matrices and the function
g, h, a, c : R→ R act on the spectrum of Xt. The main difficulties lie in the fact that
the G-expectation is not linear and that 〈B〉 is not a deterministic process. The notion
of independence of random variables with respect to a non linear expectation being
delicate, so we assume that

〈
Bij , Bkl

〉
= δikδjlb

j for some increasing process bj . Like
in [5], we derive a system of SDEs for the eigenvalues and the eigenvectors of the
solution of Xt, which is guaranteed by Lipschitz and linear growth conditions, and
prove that the eigenvalues never collide.

The rest of the paper is organized as follows. In Section 2, we recall the
G-expectation framework. In Section 3 we adapt this concept according to our objec-
tive. Besides, we give the related properties of the G-Brownian motion matrix and
the G-Itô’s formula. In Section 4, we give our main results. In Section 5, we state
the existence and uniqueness theorem of solutions of stochastic differential equations
driven by G-Brownian motion matrix.

2. PRELIMINARIES

In this section, we introduce some notations and preliminaries of the theory of sublinear
expectations and the related G-stochastic analysis, which will be needed in what follows.
More details of this section can be found in Peng [7,9,10]. Let Ω be a given nonempty
set and H a linear space of real valued functions defined on Ω such that 1 ∈ H and
|X| ∈ H, for all X ∈ H.

Definition 2.1. A sublinear expectation Ê on H is a functional Ê : H → R satisfying
the following properties: For all X,Y ∈ H, we have:

1. monotonicity: If X ≥ Y , then Ê[X] ≥ Ê[Y ];
2. preservation of constants: Ê[c] = c, for all c ∈ R;
3. subadditivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];
4. positive homogeneity: Ê [λX] = λÊ [X], for all λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space.

Remark 2.2. H is considered as the space of random variables on Ω.
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Let us now consider a space of random variables H with the additional property
of stability with respect to bounded Lipschitz functions. More precisely, we suppose,
if Xi ∈ H, i = 1, . . . , d, then

ϕ(X1, X2, . . . , Xd) ∈ H, for all ϕ ∈ Cb,Lip(Rd),
where Cb,Lip(Rd) denotes the space of all bounded Lipschitz functions on Rd.

Definition 2.3. In a sublinear expectation space (Ω,H, Ê), a random vector
Y = (Y1, Y2, . . . , Yn), Yi ∈ H, is said to be independent under Ê from another random
vector X = (X1, X2, . . . , Xm), Xi ∈ H, if for each test function ϕ ∈ Cb,Lip(Rm+n)
we have

Ê [ϕ(X,Y )] = Ê
[
Ê [ϕ(X,Y )]

∣∣∣
x=X

]
.

Definition 2.4. Let X1 and X2 be two n−dimensional random vectors defined
respectively on the sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They
are called identically distributed, denoted by X1

d= X2, if

Ê1 [ϕ(X1)] = Ê2 [ϕ(X2)] for all ϕ ∈ Cb,Lip(Rn).

After the above basic definition we introduce now the central notion of G-normal
distribution.
Definition 2.5. A d−dimensional random vector X = (X1, . . . , Xd) in a sublinear
expectation space (Ω,H, Ê) is called G-normal distributed if for each a, b ≥ 0:

aX + bX
d=
√
a2 + b2X,

where X is an independent copy of X, and

G(A) := 1
2 Ê [〈AX,X〉] : Sd → R,

here Sd denotes the collection of d× d symmetric matrices.
By [7], we know that X = (X1, . . . , Xd) is G-normal distributed if and only

if u(t, x) := Ê
[
ϕ(X +

√
tX)

]
, (t, x) ∈ [0,∞) × Rd, ϕ ∈ Cb,Lip(Rd), is the unique

viscosity solution of the following G-heat equation:
{
∂tu(t, x) = G(Du(t, x)), (t, x) ∈ [0,∞)× Rd,
u(0, x) = ϕ(X),

where Du(t, x) is the Hessian of u(t, x).
The function G(·) : Sd → R is a monotonic sublinear functional on Sd, from

which we can deduce that there exists a bounded, convex and closed subset Σ ∈ S+
d

the collection such that
G(A) = 1

2 sup
B∈Σ

tr(AB).

In this context, the set Γ =
{
Q ∈ Rd×d : QQT ∈ Σ

}
captures the uncertainty of the

probability distribution (variance uncertainty) of the G-distributed random vector X.
Note that if d = 1, X has no mean uncertainty. We write X ∼ N(0; Σ).
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Remark 2.6. When d = 1, Σ is an interval that is Σ =
[
σ2;σ2] with 0 ≤ σ ≤ σ.

Here G = Gσ,σ is the following sublinear function parameterized by σ and σ:

G(α) = 1
2(σ2α+ − σ2α−), α ∈ R,

Recall that α+ = max{0, α} and α− = −min{0, α}. In fact σ2 = Ê
[
X2] and

σ2 = −Ê
[
−X2] (see [7, 11]).

Definition 2.7. A d−dimensional process B = (Bt)t≥0 ⊂ H in a sublinear expectation
space (Ω,H, Ê) is called a G-Brownian motion if the following properties are satisfied:

a) B0 = 0;
b) for each t, s ≥ 0, the incrementBt+s−Bt isN(0; sΣ)−distributed and is independent

from (Bt1 , . . . , Btn), for all n ∈ N and 0 ≤ t1 ≤ . . . ≤ tn ≤ t.

Note that 〈a,Bt〉 is a real Gσa,σa
−Brownian motion for each a ∈ Rd, where 〈·, ·〉 is

the Euclidian inner product of Rd, σa2 = Ê(〈a,B1〉2) and σa2 = −Ê(−〈a,B1〉2) (for
more details, see [10]).

3. G-MATRICIAL STOCHASTIC CALCULUS

In the following we will identify each n× n matrix to a vector of n2 dimension. Let
us consider Ω = C0(Rn×n) the set of all Rn×n−valued continuous functions (ωt)t∈R+

with ω0 = 0, where Rn×n is the space of n× n matrix, equipped with the distance

ρ(ω1, ω2) =
∞∑

i=1
2−i

[
( max
t∈[0,i]

∣∣ω1
t − ω2

t

∣∣) ∧ 1
]
, ω1, ω2 ∈ Ω.

We denote by B(Ω) the Borel σ−algebra on Ω. We also set, for each t ∈ [0,∞),
Ωt := {ω.∧t : ω ∈ Ω}. The spaces of Lipschitzian functions on Ω are denoted by:

Lip(Ωt) =
{
ϕ(Bt1∧t, . . . , Btd∧t) : t1, . . . , td ∈ [0;∞), ϕ ∈ Cb,Lip(Rn×n)d

}
,

Lip(Ω) =
∞⋃

n=1
Lip(Ωn).

Here we use the space of all Lipschitzian and bounded functions Cb,Lip(Rn×n)d in
our framework only for convenience. In general Lip(Ωt), Lip(Ω) can be replaced by
the following spaces of functions defined on Rn×n:

– L0(Ω): the space of all B(Ω)-measurable real valued functions on Ω;
– L0(Ωt): the space of all B(Ωt)-measurable real valued functions on Ω;
– Lb(Ω): the space of all bounded elements in L0(Ω);
– Lb(Ωt): the space of all bounded elements in L0(Ωt).
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Let T > 0 be a fixed time. We denote by LpG(ΩT ), p ≥ 1, the completion
of G-expectation space Lip(ΩT ) with respect to the norm ‖X‖p := Ê [|X|p]1/p,
1 ≤ p <∞. Let LpG(Ω) be the Banach space defined as the closure of

H :=
{
ϕ(ωt1 , . . . , ωtd) : ϕ ∈ Cb,Lip(Rn×n)d, 0 ≤ t1 < . . . < td, d ≥ 1

}
.

As in [9–11], we can construct a nonlinear expectation Ê on H under which
the coordinate process (i.e. Bt(ω) = ωt) is a G-Brownian motion matrix and the
conditional expectation Ê(· | Ωt), which is continuous on LpG(ΩT ). Thus (Bijt ) is
a Gσij ,σij

−Brownian motion where σij2 = Ê
[
(Bij1 )2

]
and σij2 = −Ê

[
−(Bij1 )2

]
for

each i, j ∈ 1, n.
Let us point out that the space Cb(Ω) of the bounded continuous functions on Ω is

a subset of L1
G(Ω). Moreover, there exists a weakly compact family P of probability

measures on (Ω,B(Ω)) such that

Ê[·] = sup
P∈P

EP [·],

where EP stands for the expectation with respect to the probability P (see [11]).
We introduce the natural capacity c(·) associated to P defined by

c(A) := sup
P∈P

P (A), A ∈ B(Ω).

Definition 3.1. A set A ⊆ Ω is polar if c(A) = 0. A property holds “quasi-surely”
(q.s., for short) if it holds outside a polar set.

Definition 3.2. A process (Mt)0≤t≤T is called G-martingale if for each t,Mt ∈ L1
G(Ωt)

and for each s ∈ [0, t] we have Ê(Mt | Ωs) = Ms, where Ê(· | Ωt) is a continuous
mapping on Lip(ΩT ) endowed with the norm ‖·‖1,G. Therefore, it can be extended
continuously to LpG(ΩT ).

For each p ≥ 1, consider the following space M0.p
G (0, T ) of simple type of processes,

that is

η := ηt(ω) =
N−1∑

j=0
ξj(ω)1[tj ,tj+1)(t) for 0 = t0 < . . . < tN = T,

where ξj ∈ LpG(Ωtj ), j = 0, . . . , N−1. Denote byMp
G(0, T ) the completion ofM0.p

G (0, T )
under the norm

‖η‖Mp
G

(0,T ) =

∣∣∣∣∣∣

T∫

0

Ê [|η(t)|p] dt

∣∣∣∣∣∣

1/p

.

For two processes η ∈ M2
G(0, T ) and ξ ∈ M1

G(0, T ), the G-Itô integrals
(
∫ t

0 ηsdB
ij
s )0≤t≤T , which is a G-martingale and (

∫ t
0 ξsd

〈
Bij , Bkl

〉
s
)0≤t≤T are well
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defined (see [2,7, 10,12]), where the quadratic co-variation process
〈
Bij , Bkl

〉
is the

non deterministic process formulated in L2
G(Ωt) defined by

〈
Bij , Bkl

〉
t

:= Bijt B
kl
t −

t∫

0

Bijs dB
kl
s −

t∫

0

Bkls dB
ij
s .

We write
〈
Bij
〉
instead of

〈
Bij , Bij

〉
the quadratic variation of Bij . In fact,

〈
Bij , Bkl

〉
t

can be regarded as the limit in L2
G(Ωt) of

N∑

p=1
(Bijtmp+1

−Bijtmp )(Bkltmp+1
−Bkltmp ),

where {0 = tm0 < tm1 < . . . < tmN = T} is a sequence of partitions of [0, T ] such that
max
p

∣∣tmp+1 − tmp
∣∣ tends to 0 when m goes to infinity. It was shown in [12] that

σij
2t ≤

〈
Bij
〉
t
≤ σij2t.

For the following generalized Itô formula (see [8] for the vectorial case), we use
Einstein’s notation.

Theorem 3.3. Let ϕ ∈ C2(Rn×n) and its first and second derivatives are in
Cb,Lip(Rn×n). Let X = (Xij) be a matrix process on [0, T ] with the form

Xpq
t = Xpq

0 +
t∫

0

αpq(s)ds+
t∫

0

θpqijkl(s)d
〈
Bij , Bkl

〉
s

+
t∫

0

βpqkl (s)dB
kl
s ,

where αpq, θpqijkl ∈ M1
G(0, T ) and βpqkl ∈ M2

G(0, T ). Then for each t ∈ [0, T ], we have,
q.s.,

ϕ(Xt)− ϕ(X0)

=
t∫

0

∂xpqϕ(Xu)βpqkl (u)dBklu +
t∫

0

∂xpqϕ(Xu)αpq(u)du

+
t∫

0

[
∂xpqϕ(Xu)θpqijkl(u) + 1

2∂
2
xp′q′xpqϕ(Xu)βpqij (u)βp

′q′

kl (u)
]
d
〈
Bij , Bkl

〉
u
.

Note that this formula remains valid if X is not a square matrix.

In the following we use the notation

dXpq
t dX

mn
t =

∑

i,j,k,l

βpqijt βmnklt d
〈
Bij , Bkl

〉
t
.

We have then d
〈
Bij , Bkl

〉
= dBijdBkl.
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Let Sn be the collection of symmetric n−dimensional matrices identified with
Rn(n+1)/2. Recall that if g : R → R, X ∈ Sn and X = HΛHT be the factorization
with H an orthonormal matrix and Λ a diagonal one, then g(X) = Hg(Λ)HT . Let
Xt be a stochastic process with values in Sn such that X0 ∈ S̃n, the set of symmetric
matrices with n different eigenvalues. Let Λt = diag(λi(t)) be the diagonal matrix
of eigenvalues of Xt ordered increasingly: λ1(t) ≤ λ2(t) ≤ . . . ≤ λn(t) and Ht an
orthonormal matrix of eigenvectors of Xt. Matrices Λ and H may be chosen as smooth
functions of X until the first collision time τ = inf {t : λi(t) = λj(t) for some i 6= j}.

As in the classical case, we define the Stratonovich differential ◦ for two matrices
X and Y :

X ◦ dY = XdY + 1
2dXdY and dX ◦ Y = dXY + 1

2dXdY.

Proposition 3.4. We have for each matrices process X,Y defined as in Theorem 3.3:

(i) the integration formula by parts holds:

d(XY ) = XdY + dXY + dXdY,

where dXdY is the classical matricial product,
(ii)

d(XY ) = dX ◦ Y +X ◦ dY,
dX ◦ (Y Z) = (dX ◦ Y ) ◦ Z,
(X ◦ dY )T = dY T ◦XT .

Proof. By using the theorem 3.3 with ϕ(x, y) = xy we obtain that

d(Xpq
t Y

mn
t ) = dXpq

t Y
mn
t +Xpq

t dY
mn
t + dXpq

t dY
mn
t ,

which implies (i).
(ii) follows from (i) and the definition of the Stratonovich differential.

4. MAIN RESULTS

In the rest of this paper, we assume that B satisfies the following assumption:

(A) There exist an increasing real process bj such that
〈
Bij , Bkl

〉
t

= δikδjlb
j
t q.s. for

each i, j, k, l ∈ 1, n, where δuv is the Kronecker symbol.

We have then σ2t ≤ bjt ≤ σ2t, where σ := max
i,j

σij and σ := min
i,j
σij . Note that in

the classical case the assumption (A) is satisfied with bjt = t.
Let us consider the general G-stochastic differential equation defined by

dXt = g(Xt)dBth(Xt) + h(Xt)dBTt g(Xt) + a(Xt)dt+ c(Xt)d 〈B〉t (4.1)
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with g, h, a, c : R→ R, and X0 ∈ S̃n, where the quadratic variation d 〈B〉 of the matrix
B is defined by d 〈B〉 := dBdB. Thus, according to the assumption (A), d 〈B〉 is
diagonal matrix such that d 〈B〉ij = δijdb

i.
Now we are able to state our main result. Note that in our model, the stochastic

differential equation studied (4.1) behaves as in the linear case. The techniques used are
inspired by the linear case, where the G-Brownian motion plays the role of a classical
Brownian motion.
Theorem 4.1. Let Xt be a solution of the equation (4.1) such that X0 ∈ S̃n. Then
there exists a G-real Brownian motion W i (resp. βij) such that

〈
W i,W j

〉
= δijb

j

(resp.
〈
βij , βkl

〉
= δikδjlb

j) for each i, j, k, l ∈ 1, n such that for t < τ the eigenvalues
process Λt and the eigenvectors process Ht are solutions of the following system:

dλi = 2g(λi)h(λi)
∑

k

HkidW k + a(λi)dt+ dV ii (4.2)

dHij =
∑

k 6=j

Hik

λj − λk

{ [
g(λk)h(λj)(dβH)jj + g(λj)h(λk)(dβH)kk

]
+ dV kj

}

− 1
2
∑

k

HikdQkj ,

(4.3)

where
dV ij = δijc(λi)

∑

k

(Hki)2dbk + dRij

with

dRij =
∑

k 6=j

1
λj−λk

[
(δikg2(λk)h(λk)h(λj) + g2(λk)h(λi)h(λj))

∑

l

H liH ljdbl

+ δijg
2(λj)h2(λk)

∑

l

(H lk)2dbl
]

and

dQkj =
∑

l 6=k,l 6=j

1
(λl − λk)(λl − λj)

[
δkjg

2(λk)h2(λl)
∑

p

(Hpl)2dbp

+ g2(λl)h(λk)h(λj)
∑

p

HpkHpjdbp
]
.

Proof. Firstly, to simplify the notation we write Ψij instead of Ψ(Xt)ij for Ψ =
g, g2, h, a and c. Let A be the skew-symmetric matrix defined by dA = HT ◦ dH
and let the matrix dN := HT ◦ dX ◦ H. By applying the G-integration formula
by parts to Λ = HTXH, we get dΛ = dN − dA ◦ Λ + Λ ◦ dA. Now observe that
the process Λ ◦ dA − dA ◦ Λ is zero on the diagonal. Consequently dλi = dN ii and
0 = dN ij + (λi − λj)dAij , when i 6= j and so

dAij = 1
λj − λi

dN ij for i 6= j. (4.4)
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We have

dXij
t =

∑

p,q

gipdBpqt h
qj +

∑

p,q

hipdBqpt g
qj + aijdt+

∑

p,q

cipd
〈
Bpq, Bqj

〉
t
,

and then

dXij
t dX

km
t =

∑

p,q

[giphqjgkphqm + giphqjgpmhkq]dbqt

+
∑

p,q

[hipgqjgkqhpm + hipgqjhkpgqm]dbpt

=
∑

l

[
(g2)ikhljhlm + (g2)imhljhkl + (g2)kjhilhlm + (g2)jmhilhkl

]
dblt.

Finally we get

dXij
t dX

km
t =

∑

l

[
(g2)ikhljhlm + (g2)kjhlihlm

+(g2)imhljhlk + (g2)jmhlihlk
]
dblt.

(4.5)

A simple calculation of dN gives

dN = HT dXH + 1
2H

T dXdH + 1
2dH

T dXH (4.6)

and consequently the G-martingale part of dN equals the G-martingale part of
HT dXH. We have

dN ijdNkm = (HT dXH)ij(HT dXH)km,

which equals

∑

p,q,p′,q′

HpidXpqHqjHp′kdXp′q′
Hq′m,
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and taking into account the formula (4.5) with (p, q, p′, q′) instead of (i, j, k,m), we get

dN ijdNkm =
∑

l

∑

p,q,p′,q′

HpiHqjHp′kHq′m
[
(g2)

pp′
hlqhlq

′
+ (g2)p

′qhlphlq
′

+(g2)pq
′
hlqhlp

′
+ (g2)qq

′
hlphlp

′]
dbl

=
∑

l


∑

p,p′

Hpi(g2)pp
′
Hp′k

∑

q,q′

Hqjhlqhlq
′
Hq′m


 dbl

︸ ︷︷ ︸
(I)

+
∑

l


∑

q,p′

Hqj(g2)p
′qHp′k

∑

q′,p

Hpihlphlq
′
Hq′m


 dbl

︸ ︷︷ ︸
(II)

+
∑

l


∑

p,q′

Hpi(g2)pq
′
Hq′m

∑

q,p′

Hqjhlqhlp
′
Hp′k


 dbl

︸ ︷︷ ︸
(III)

+
∑

l


∑

q,q′

Hqj(g2)qq
′
Hq′m

∑

p,p′

Hpihlphlp
′
Hp′k


 dbl

︸ ︷︷ ︸
(IV )

.

Now observe that
∑

p,p′

Hpi(g2)pp
′
Hp′k = (HT g2H)ik = g2(Λ)ik = δikg

2(λk),

which implies that

(I) = δikg
2(λk)

∑

q,q′

Hqj(
∑

l

hlqhlq
′
dbl)Hq′m

= δikg
2(λk)

∑

q,q′

Hqj(h(X)d 〈B〉h(X))qq
′
Hq′m

= δikg
2(λk)(HTh(X)d 〈B〉h(X)H)jm.

Similarly, we have

(II) = δjkg
2(λk)(HTh(X)d 〈B〉h(X)H)im,

(III) = δimg
2(λm)(HTh(X)d 〈B〉h(X)H)jk,

(IV ) = δjmg
2(λm)(HTh(X)d 〈B〉h(X)H)ik,
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and so

dN ijdNkm = δikg
2(λk)(HTh(X)d 〈B〉h(X)H)jm

+ δjkg
2(λk)(HTh(X)d 〈B〉h(X)H)im

+ δimg
2(λm)(HTh(X)d 〈B〉h(X)H)kj

+ δjmg
2(λm)(HTh(X)d 〈B〉h(X)H)ik,

which implies, by using the fact that h(X)H = Hh(Λ), that

dN ijdNkm

= δikg
2(λk)(h(Λ)HT d 〈B〉Hh(Λ))jm + δjkg

2(λk)(h(Λ)HT d 〈B〉Hh(Λ))im

+ δimg
2(λm)(h(Λ)HT d 〈B〉Hh(Λ))kj + δjmg

2(λm)(h(Λ)HT d 〈B〉Hh(Λ))ik.
(4.7)

Since (HT d 〈B〉H)ij =
∑
l

H liH ljdbl, then

(h(Λ)HT d 〈B〉Hh(Λ))ij = h(λi)h(λj)
∑

l

H liH ljdbl.

It follows from (4.7) that

dN ijdNkm = δikg
2(λk)h(λj)h(λm)

∑

l

H ljH lmdbl

+ δjkg
2(λk)h(λi)h(λm)

∑

l

H liH lmdbl

+ δimg
2(λm)h(λk)h(λj)

∑

l

H lkH ljdbl

+ δjmg
2(λm)h(λi)h(λk)

∑

l

H liH lkdbl,

(4.8)

and so,
dN iidN jj = 4δijg2(λi)h2(λi)

∑

l

(H li)2dbl. (4.9)

It follows that there exists a G-real Brownian motion W i satisfying
〈
W i,W j

〉
= δijb

j

such that the G-martingale part of dλi equals

2g(λi)h(λi)
∑

k

HkidW k (4.10)

Now observe that the finite variation part dF of dN is

dFt = HTaHdt = a(Λt)dt,

so that F is diagonal and
dF iit = a(λi(t))dt. (4.11)
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Thanks to the formula (4.6) the integral part dV , with respect to dbi, of dN equals

dV = HT cd 〈B〉H + 1
2(dHT dXH +HT dXdH)

= c(Λ)HT d 〈B〉H + 1
2(dNdA+ (dNdA)T ).

Note that (c(Λ)HT d 〈B〉H)ij = δijc(λi)
∑
k

(Hki)2dbk. We have then, if i 6= j,

(dNdA)ij =
∑

k

dN ikdAkj =
∑

k 6=j

1
λj − λk

dN ikdNkj

=
∑

k 6=j

1
λj − λk

[
δikg

2(λk)h(λk)h(λj)
∑

l

H lkH ljdbl

+ g2(λk)h(λi)h(λj)
∑

l

H liH ljdbl
]

and

(dNdA)ii =
∑

k 6=i

1
λi − λk

[
g2(λk)h2(λi)

∑

l

(H li)2dbl + g2(λi)h2(λk)
∑

l

(H lk)2dbl

]
,

which imply that, for i 6= j

dV ij =
∑

k 6=j

1
λj−λk

[
(δikg2(λk)h(λk)h(λj) + g2(λk)h(λi)h(λj))

∑

l

H liH ljdbl

]
,

(4.12)
and

dV ii = c(λi)
∑

k

(Hki)2dbk +
∑

k 6=i

1
λi−λk

[
g2(λk)h2(λi)

∑

l

(H li)2dbl

+ g2(λi)h2(λk)
∑

l

(H lk)2dbl
]
.

(4.13)

The formula (4.2) follows from (4.10), (4.11) and (4.13). In order to find a stochastic
differential equation of Ht, we deduce from the definition of dA that

dH = H ◦ dA = HdA+ 1
2dHdA = HdA+ 1

2HdAdA. (4.14)

Thanks to the formula (4.4) we have

(dAdA)ij =
∑

k

dAikdAkj

=
∑

k 6=i,k 6=j

1
(λk − λi)(λj − λk)

[
δijg

2(λi)h2(λk)
∑

l

(H lk)2dbl

+ g2(λk)h(λi)h(λj)
∑

l

H liH ljdbl
]
.

(4.15)
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We deduce from the formula (4.8) that if i 6= j,

dN ijdN ij =
[
g2(λi)h2(λj)

∑

l

(H lj)2dbl + g2(λj)h2(λi)
∑

l

(H li)2dbl

]
,

then the G-martingale part of dN ij is
[
g(λi)h(λj)

∑

l

H ljdβjl + g(λj)h(λi)
∑

l

H lidβil

]

=
[
g(λi)h(λj)(dβH)jj + g(λj)h(λi)(dβH)ii

]
,

where β := (βij) is a G-Brownian motion matrix satisfying the assumption (A), so that
if i 6= j

dAij = 1
λj − λi

dN ij

= 1
λj − λi

[
g(λi)h(λj)(dβH)jj + g(λj)h(λi)(dβH)ii

]
+ dV ij .

(4.16)

The formula (4.3) follows from (4.14), (4.15) and (4.16). The proof is complete.

Proposition 4.2. Let Λ = (λi)i=1,...,n be a process starting from λ1(0) < . . . < λn(0)
and satisfying (4.2) with functions a, c, g, h : R→ R satisfying the following hypothesis:
(i) There exists C > 0 such that

|I(x)− I(y)|+
∣∣σ2J2(x)− σ2J2(y)

∣∣ ≤ C |x− y| , ∀x, y ∈ R,

for I = a, c, h2, g2 and J = g and h.
(ii) There exists K > 0 such that

∣∣σ2g2(x)h2(x)− σ2g2(y)h2(y)
∣∣ ≤ K |x− y|2 , ∀x, y ∈ R,

(iii) h2 is increasing and g2 is decreasing on R.
Then we have τ = +∞ q.s., that is the distinct eigenvalues of X will never collide.
Proof. As in the proof given by [5, 6], we set

U = −
∑

i<j

log(λj − λi).

By using G-Itô’s formula, we have

dU = −
∑

i<j

[ −dλi
λj − λi

+ dλj
λj − λi

+ 1
2

[ −d 〈λi〉
(λj − λi)2 + −d 〈λj〉

(λj − λi)2 + 2 d 〈λi, λj〉
(λj − λi)2

]]
.

In fact
d 〈λi, λj〉 = dλidλj = 4δijg2(λi)h2(λi)

∑

k

(Hki)2dbk,
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and so

dU =
∑

i<j

dλi − dλj
λj − λi

+ 1
2
∑

i<j

d 〈λi〉+ d 〈λj〉
(λj − λi)2 .

By using the G-SDE of the eigenvalues (4.2),

dU = 2
∑

i<j

g(λi)h(λi)
∑
k

HkidW k − g(λj)h(λj)
∑
k

HkjdW k

λj − λi

+
∑

i<j

a(λi)− a(λj)
λj − λi

dt

+
∑

i<j

dV ii − dV jj
λj − λi

+ 2
∑

i<j



g2(λi)h2(λi)

∑
k

(Hki)2dbk + g2(λj)h2(λj)
∑
k

(Hkj)2dbk

(λj − λi)2




= dM + dP,

where

dM = 2
∑

i<j

g(λi)h(λi)
∑
k

HkidW k − g(λj)h(λj)
∑
k

HkjdW k

λj − λi
.

We will show that dP is bounded on any interval [0, T ]. To this end, we set

dP = dA1 + dA2 + dA3

and

dku = g2(λk)h2(λu)
∑

l

(H lu)2dbl + g2(λu)h2(λk)
∑

l

(H lk)2dbk for u = i, j,
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where

A1 =
∑

i<j

t∫

0

a(λi)− a(λj)
λj − λi

ds,

A2
t =

∑

i<j

( t∫

0

dV iis − dV jjs
λj − λi

+ 2
t∫

0

dijs
(λj − λi)2

)

=
∑

i<j

[ t∫

0

∑
l

(c(λi)(H li)2 − c(λj)(H lj)2)

λj − λi
dbls

+
t∫

0

1
(λj − λi)

∑

k 6=i

dkis
λi − λk

−
t∫

0

1
(λj − λi)

∑

k 6=j

dkjs
λj − λk

+ 2
t∫

0

dijs
(λj − λi)2

]

and

A3
t = 2

∑

i<j

t∫

0

(h2(λj)− h2(λi))(g2(λj)
∑
l

(H lj)2dbl − g2(λi)
∑
l

(H li)2dbl)

(λj − λi)2 .

By using the hypothesis (i) and the fact that
∑
l

(H li)2 = 1, we get

∣∣A1
t

∣∣ ≤
∑

i<j

t∫

0

|a(λi)− a(λj)|
|λj − λi|

ds ≤ C p(p− 1)
2 T,

A3
t ≤ 2

∑

i<j

t∫

0

(h2(λj)− h2(λi))(σ2g2(λj)− σ2g2(λi))
(λj − λi)2 ds

and so
∣∣A3∣∣ ≤ C2p(p− 1)T.

We set

A4
t =

∑

i<j

t∫

0

∑
l

(c(λi)(H li)2 − c(λj)(H lj)2)dbls

λj − λi
,
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then we have

A2
t = A4

t +
∑

i<j

t∫

0

[∑

k 6=i

dkis
(λi − λk)(λj − λi)

−
∑

k 6=j

dkjs
(λj − λk)(λj − λi)

+ 2dijs
(λj − λi)2

]
.

(4.17)

Since

∑

i<j

(∑

k 6=i

dki

(λi − λk)(λj − λi)
−
∑

k 6=j

dkj

(λj − λk)(λj − λi)
+ 2dij

(λj − λi)2

)

=
∑

i<j<k

(λk − λj)djk − (λk − λi)dik + (λj − λi)dji
(λk − λj)(λk − λi)(λj − λi)

,

then by the same argument used in [5], with

Djik =
[

(g2(λj)− g2(λk))(
∑

l

(h2(λi)(H li)2 − h2(λk)(H lk)2)dbl)

+(g2(λi)− g2(λk))(
∑

l

(h2(λj)(H lj)2 − h2(λk)(H lk)2)dbl)
]

× (λi − λj)
= (dij − dik − djk + dkk)(λi − λj),

we obtain that
A2 = A4 +A5 +A6,

where

A5
t = 1

2
∑

i<j<k

t∫

0

(Djik
s +Dikj

s −Djki
s )

(λk − λj)(λk − λi)(λj − λi)

and

A6
t = 1

2
∑

i<j<k

t∫

0

(λk − λi)djjs − (λk − λj)diis − (λj − λi)dkks
(λk − λj)(λk − λi)(λj − λi)

.

According to the facts that
∑
l

(H lj)2 = 1 and σ2t ≤ blt ≤ σ2t. We have

djjs − diis = g2(λj)h2(λj)
∑

l

(H lj)2dbls − g2(λi)h2(λi)
∑

l

(H li)2dbls

≤ (σ2g2(λj)h2(λj)− σ2g2(λi)h2(λi))ds
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and so

A6
t = 1

2
∑

i<j<k

t∫

0

1
λk − λi

(djjs − diis
λj − λi

− dkks − djjs
λk − λj

)

≤ 1
2
∑

i<j<k

t∫

0

1
λk − λi

(
σ2g2(λj)h2(λj)− σ2g2(λi)h2(λi)

λj − λi

− σ2g2(λk)h2(λk)− σ2g2(λj)h2(λj)
λk − λj

)
ds.

Thus

∣∣A6
t

∣∣ ≤
∑

i<j<k

t∫

0

1
λk − λi

(∣∣σ2g2(λj)h2(λj)− σ2g2(λi)h2(λi)
∣∣

λj − λi

+
∣∣σ2g2(λj)h2(λj)− σ2g2(λk)h2(λk)

∣∣
λk − λj

)
ds,

then thanks to the hypothesis (ii) we obtain
∣∣A6

t

∣∣ ≤ K
∑

i<j<k

T <∞.

On the other hand, we have

∣∣A4
t

∣∣ ≤
∑

i<j

t∫

0

∣∣∣∣
∑
l

(c(λi)(H li)2 − c(λj)(H lj)2)
∣∣∣∣ dbls

λj − λi

≤ σ2
∑

i<j

t∫

0

∣∣∣∣c(λi)
∑
l

(H li)2 − c(λj)
∑
l

(H lj)2
∣∣∣∣ ds

λj − λi

≤ σ2
∑

i<j

t∫

0

|c(λi)− c(λj)| ds
λj − λi

,

then ∣∣A4
t

∣∣ ≤ C p(p− 1)
2 σ2T.

Obviously, we have
t∫

0

Djik
s

(λk − λj)(λk − λi)(λj − λi)
≤

t∫

0

(g2(λj)− g2(λk))(σ2h2(λi)− σ2h2(λk))
(λk − λj)(λk − λi)

ds

+
t∫

0

(g2(λi)− g2(λk))(σ2h2(λj)− σ2h2(λk))
(λk − λj)(λk − λi)

ds,
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which implies that
∣∣∣∣∣∣

t∫

0

Djik
s

(λk − λj)(λk − λi)(λj − λi)

∣∣∣∣∣∣
≤ 2C2T,

and so ∣∣A5
t

∣∣ ≤ 3C2T
∑

i<j<k

<∞.

Finally, we obtain that
∣∣A2

t

∣∣ ≤ C ′T and dP is bounded on any interval [0, T ]. Since M
is a classical martingale under each P ∈ P , then by using McKean argument (see [5])
we deduce that τ =∞ P a.s. for each P ∈ P . The proof is complete.

5. EXISTENCE AND UNIQUENESS

Faizullah [3], Graczyk and Malecki [5] have discussed and shown by different methods
the pathwhise uniqueness of the solutions of stochastic differential equations. We give
another result concerning the stochastic matrix differential equations (4.1). To this
end, we will need the G-Burkholder–Davis–Gundy inequalities.

Lemma 5.1 (see [4]). Let (Bt) be a real G-Brownian motion. Then we have:

(i) if p ≥ 1, η ∈Mp
G([0, T ])and 0 ≤ s ≤ t ≤ T , then

Ê


 sup
s≤u≤t

∣∣∣∣∣∣

u∫

s

ηrd 〈B〉r

∣∣∣∣∣∣

p
 ≤ C1(t− s)p−1

t∫

s

Ê [|ηu|p] du,

where C1 > 0 is a constant independent of η,
(ii) if p ≥ 2, then

Ê


 sup
s≤u≤t

∣∣∣∣∣∣

u∫

s

ηrdBr

∣∣∣∣∣∣

p
 ≤ C2 |t− s|

p
2−1

t∫

s

Ê [|ηu|p] du,

where C2 > 0 is a constant independent of η.

Theorem 5.2. Assume that the function g, h, a, c : R → R, satisfy the following
conditions:

(i) Lipschitz condition: For all X,Y ∈ Rn×n

|J(X)− J(Y )|2 ≤ A |X − Y |2 ,

where J(X) = g(X)ikh(X)jl, a(X) and c(X) respectively and A is a positive
constant.
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(ii) Linear growth condition: For all X ∈ Rn×n

|J(X)|2 ≤ K(1 + |X|2),

where J(X) = g(X)ikh(X)jl, a(X) and c(X) respectively and K is a positive
constant. Then the pathwise uniqueness hold for Xt.

Remark 5.3. A typical example of (i) and (ii) is g(x) = a(x) = c(x) = x and h(x) = 1,
which corresponds to the SDE

dXt = XtdBt + dBTt Xt +Xtdt+Xtd 〈B〉t .

Remark 5.4. We mean by “the pathwise uniqueness holds” that if Xk, k = 1, 2 are
two solutions of the SDE (4.1) then the equality between the initial values xk implies
that X1

t = X2
t q.s. for each t ∈ [0, T ].

Proof. We begin with the proof of the uniqueness. We have

dXij =
∑

k,l

(g(X)ikh(X)lj + g(X)kjh(X)il)dBkl + a(X)ijdt+ c(X)ijdbj . (5.1)

Let X(xk), k = 1, 2 be a solution of the SDE (4.1) with the initial value xk = (xijk )
and let

J ijkl(X) := g(X)ikh(X)lj + g(X)kjh(X)il

for X ∈ Rn×n. Then we have for u ≤ t
∣∣Xij

u (x1)−Xij
u (x2)

∣∣2 ≤ C
{ ∣∣∣xij1 − xij2

∣∣∣
2

+
∑

k,l

∣∣∣∣∣∣

u∫

0

(J ijkl(Xs(x1))− J ijkl(Xs(x2)))dBkls

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

u∫

0

(a(Xs(x1))ij − a(Xs(x2))ij)ds

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

u∫

0

(c(Xs(x1))ij − c(Xs(x2))ij)dbjs

∣∣∣∣∣∣

2}
.

By using the BDG type inequalities with p = 2 and Lipschitz conditions, we obtain

Ê(sup
u≤t
|Xu(x1)−Xu(x2)|2)

≤ C(T, n)


|x1 − x2|2 +

t∫

0

Ê(sup
u≤s
|Xu(x1)−Xu(x2)|2)ds


.
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We conclude, by using Gronwall’s lemma, that

Ê(sup
u≤t
|Xu(x1)−Xu(x2)|2) ≤ C(T, n) |x1 − x2|2 eC(T,n)t.

In particular, if x1 = x2 we have the pathwise uniqueness of Xt. For the existence of
the solution of (4.1), we consider a Picard sequence mX = (mXij)m∈N defined by:

0Xij
t = xij ∈ R, 0 ≤ t ≤ T,

m+1Xij
t = xij +

∑

k,l

t∫

0

J ijkl(mXs)dBkls +
t∫

0

a(mXs)ijds+
t∫

0

c(mXs)ijdbjs (5.2)

and then

∣∣∣m+1Xij
t

∣∣∣
2
≤ C ′




∣∣xij

∣∣2 +
∑

k,l

∣∣∣∣∣∣

t∫

0

J ijkl(mXs)dBkls

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

t∫

0

a(mXs)ijds

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

t∫

0

c(mXs)ijs dbj
∣∣∣∣∣∣

2



.

By the BDG type inequalities and linear growth conditions, we have

Ê(|m+1Xij
t |2) ≤ C ′(T, n)(

∣∣xij
∣∣2 +

t∫

0

(1 + Ê(
∣∣mXij

s

∣∣2))ds),

which implies that

Ê(
∣∣m+1Xt

∣∣2) ≤ C ′(T, n)(|x|2 + T +
t∫

0

Ê(|mXs|2)ds),

and so
Ê(
∣∣m+1Xt

∣∣2) ≤ C ′(T, n)(|x|2 + T )eC
′(T,n)t.

Now, we will prove that (mX) is a Cauchy sequence in L2
G. We have

k+1Xij
t − kXij

t =
∑

p,l

t∫

0

(J ijpl(kXs)− J ijpl(k−1Xs))dBpls

+
t∫

0

(a(kXs)ij − a(k−1Xs)ij)ds

+
t∫

0

(c(kXs)ij − c(k−1Xs)ij)dbjs.
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By an argument similar to the one used in the proof of the uniqueness, we obtain that

Ê(
∣∣k+1Xt − kXt

∣∣2) ≤ C ′′(T, n)
( t∫

0

Ê(
∣∣kXs − k−1Xs

∣∣2)ds
)

≤ C ′′(T, n)2
( t∫

0

t1∫

0

Ê(
∣∣k−1Xt2 − k−2Xt2

∣∣2)dt1dt2
)

...

≤ C ′′(T, n)k+1
( t∫

0

t1∫

0

· · ·
tk∫

0

Ê(
∣∣1Xtk − x

∣∣2)dt1 · · · dtk
)
.

(5.3)

On the other hand, we have

Ê(
∣∣1Xtk − x

∣∣2) = Ê
(∑

i,j

(∑

p,q

J ijpq(x)Bpqtk + a(x)ijtk + c(x)ijbjtk
)2)

≤ K(n)
∑

i,j

[∑

p,q

(J ijpq(x))2Ê(Bpqtk )2 + (a(x)ij)2T 2

+ (c(x)ij)2Ê(bjtk )2
]

≤ K(n, x, σ, T ),

which imply that

∥∥k+1Xt − kXt

∥∥2
2 = Ê(

∣∣k+1Xt − kXt

∣∣2) ≤ K(n, x, σ, T ) (C ′′(T, n)T )k+1

(k + 1)! .

and for each p,m ∈ N

∥∥m+pXt − mXt

∥∥
2 ≤

m+p−1∑

k=m

∥∥k+1Xt − kXt

∥∥
2 ≤

∞∑

k=m

∥∥k+1Xt − kXt

∥∥
2

≤
√
K(n, x, σ, T )

∞∑

k=m

√
(C ′′(T, n)T )k+1

(k + 1)! .

Then (mXt) is a Cauchy sequence. Let Xt be the limit of mXt. In order to complete
the proof, we must show that Xt is the solution of the equation (4.1). To this end
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we have just to prove that

lim
m→∞

Ê

( t∫

0

(J ijpq(mXs)− J ijpq(Xs))dBpqs
)2

= 0,

lim
m→∞

Ê

( t∫

0

(a(mXs)ij − a(Xs)ij)ds
)2

= 0

and

lim
m→∞

Ê

( t∫

0

(c(mXs)ij − c(Xs)ij)d
〈
Bjj

〉)2
= 0.

The first and the third equalities are guaranteed by Lipschitz condition and BDG
inequality. For the second inequality, we have by using Holder’s inequality and Lipschitz
condition

( t∫

0

(a(mXs)ij − a(Xs)ij)ds
)2
≤ TA

t∫

0

|mXs −Xs|2 ds.

We conclude by taking G-expectation Ê in both sides and by using the fact that
mX converges to X.
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