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Abstract. In this paper, we investigate the processes of eigenvalues and eigenvectors of
a symmetric matrix valued process X:, where X; is the solution of a general SDE driven
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1. INTRODUCTION

Random Matrix Theory is an active research area of modern Mathematics with input
from Mathematical and Theoretical Physics, Mathematical Analysis and Probability.
Now we will talk about the origins of random matrix theory in mathematical statistics,
common knowledge out of the 1928 paper of Wishart on correlation matrices. The real
start of the field is usually attributed to highly influential papers by Eugene Wigner
in the 1950’s motivated by applications in Nuclear Physics [1].

Recently Graczyk and Malecki in 2013 [5] derived, in a general context, a system
of SDEs for the eigenvalues and the eigenvectors for a solution X; valued in the space
of symmetric n X n matrices, of an SDE driven by a Brownian motion matrix of
dimension n x n. Under some conditions on the SDE satisfied by X, they established
the existence and the uniqueness of the stochastic differential equations of eigenvalues
and eigenvectors and shown that the eigenvalues never collide.

In recent decades, the theory and methodology of nonlinear expectation have
been well developed and received much attention in some application fields such as
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finance, risk measure and control. A typical example of the nonlinear expectation,
called G-expectation was introduced by Peng [7]. Under this G-expectation framework
a new type of Brownian motion called G-Brownian motion was constructed and the
related stochastic calculus was established.

The aim of this paper is to bring together the notion of random matrices and
G-stochastic calculus to study SDEs of eigenvalues and eigenvectors for a matrix
process. Namely, we consider the following general G-SDE

dX; = g(X¢)dBih(X:) + h(X1)dB{ g(Xy) + a(Xy)dt + o(X:)d (B), ,

where B; is a G-Brownian motion matrix of dimension n X n, the matrix stochastic
process X; takes values in the space of symmetric n X n matrices and the function
g,h,a,c: R — R act on the spectrum of X;. The main difficulties lie in the fact that
the G-expectation is not linear and that (B) is not a deterministic process. The notion
of independence of random variables with respect to a non linear expectation being
delicate, so we assume that <Bij, Bkl> = 5ik6jlbj for some increasing process /. Like
in [5], we derive a system of SDEs for the eigenvalues and the eigenvectors of the
solution of X;, which is guaranteed by Lipschitz and linear growth conditions, and
prove that the eigenvalues never collide.

The rest of the paper is organized as follows. In Section 2, we recall the
G-expectation framework. In Section 3 we adapt this concept according to our objec-
tive. Besides, we give the related properties of the G-Brownian motion matrix and
the G-It0’s formula. In Section 4, we give our main results. In Section 5, we state
the existence and uniqueness theorem of solutions of stochastic differential equations
driven by G-Brownian motion matrix.

2. PRELIMINARIES

In this section, we introduce some notations and preliminaries of the theory of sublinear
expectations and the related G-stochastic analysis, which will be needed in what follows.
More details of this section can be found in Peng [7,9,10]. Let Q be a given nonempty
set and H a linear space of real valued functions defined on €2 such that 1 € H and
|X| € H, for all X € H.

Definition 2.1. A sublinear expectation £ on H is a functional E : # — R satisfying
the following properties: For all X,Y € H, we have:

monotonicity: If X > Y, then E[X} > E[Y};
preservation of constants: £ c] =c, for all c € R;
subadditivity: E[X + Y] < E[X] + E[Y];

positive homogeneity: £ [AX] = AE [X], for all A\ > 0.

e

The triple (2, H, E) is called a sublinear expectation space.

Remark 2.2. H is considered as the space of random variables on (2.
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Let us now consider a space of random variables H with the additional property
of stability with respect to bounded Lipschitz functions. More precisely, we suppose,
if X;,€eH,i=1,...,d, then

0(X1,Xa,...,Xq) € H, for all p € Cy 1;p(RY),
where Cj, 1.,,(R?) denotes the space of all bounded Lipschitz functions on R€.

Definition 2.3. In a sublinear expectation space (€, H, E), a random vector
Y =(Y1,Ys,...,Y,), Y; € H, is said to be independent under E from another random
vector X = (X1, Xo,...,X;n), X; € H, if for each test function ¢ € Cj, 1, (R™1™)
we have

Blp(X,V)] = B Elp(X,Y)]

a::Xi| '
Definition 2.4. Let X; and X5 be two n—dimensional random vectors defined
respectively on the sublinear expectation spaces (21, H1, F1) and (g, Hz, E3). They

are called identically distributed, denoted by X3 4 X, if
By [p(X1)] = Ba [p(X2)] for all € Cy 1;,(R™).

After the above basic definition we introduce now the central notion of G-normal
distribution.

Definition 2.5. A d—dimensional random vector X = (X1,...,X4) in a sublinear
expectation space (Q, H, E) is called G-normal distributed if for each a,b > 0:

aX +bX £ Va2 112X,

where X is an independent copy of X, and

G(A) = %E [(AX, X)]: Sy — R,

here S; denotes the collection of d X d symmetric matrices.

By [7], we know that X = (Xi,...,Xq) is G-normal distributed if and only
if u(t,z) = E[p(X +VtX)], (t,z) € [0,00) x R, ¢ € Cy 1ip(RY), is the unique
viscosity solution of the following G-heat equation:

{8tu(t,x) = G(Du(t,z)), (t,z) € [0,00) x RY,
U(O, l’) = @(X)v

where Du(t, ) is the Hessian of u(t, x).

The function G(-) : S4 — R is a monotonic sublinear functional on Sg, from
which we can deduce that there exists a bounded, convex and closed subset 3 € S;r
the collection such that 1

G(A) = —suptr(AB).
2Bex
In this context, the set I' = {Q e R4 . QQT ¢ Z} captures the uncertainty of the
probability distribution (variance uncertainty) of the G-distributed random vector X.
Note that if d = 1, X has no mean uncertainty. We write X ~ N(0;X).
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Remark 2.6. When d = 1, X is an interval that is ¥ = [QQ;EQ] with 0 < o < 7.
Here G = G5, is the following sublinear function parameterized by ¢ and o

G(a) = %(EQOﬁ —od%a7), acR,

Recall that ot = max{0,a} and o~ = —min{0,a}. In fact 7> = E [X?] and
0? = —E [-X?] (see [7,11)).

Definition 2.7. A d—dimensional process B = (B;):>0 C H in a sublinear expectation
space (2, H, E’) is called a G-Brownian motion if the following properties are satisfied:

a) By =0;
b) foreacht,s > 0, the increment By, s— By is N(0; sX)—distributed and is independent
from (By,,...,B;,), foralln e Nand 0 <t; < ... <¢, <t.

Note that (a, B;) is a real G, z;—Brownian motion for each a € R?, where (-,-) is

the Euclidian inner product of R%, 7,2 = E((a, B;)”) and 0, = —E(—(a, By)?) (for
more details, see [10]).

3. G-MATRICIAL STOCHASTIC CALCULUS

In the following we will identify each n x n matrix to a vector of n? dimension. Let
us consider 2 = Cy(R™*™) the set of all R"*™—valued continuous functions (w;)ier+
with wg = 0, where R™*" is the space of n X n matrix, equipped with the distance

1,2 —i 1 2 1,2
plw,w —g 2 max |w wi )AL, whw® e
( ) P} |:(t€[0,i]| t t|)

We denote by B(€)) the Borel o—algebra on 2. We also set, for each ¢t € [0,00),
Q= {w At : w € Q}. The spaces of Lipschitzian functions on 2 are denoted by:

Llp(Qt) = {Sﬁ(Btl/\t7 e ;Btd/\t) : tl, [N 7td S [0,00), "2} S Cb7L¢p(Rnxn)d} s

Lip(Q) = | Lip(Q).
n=1

Here we use the space of all Lipschitzian and bounded functions Cj, Lip(R"X")d in
our framework only for convenience. In general Lip(€);), Lip(€2) can be replaced by
the following spaces of functions defined on R™*":

— LY(£2): the space of all B(Q)-measurable real valued functions on €);

— L%(Q;): the space of all B(;)-measurable real valued functions on €;
Ly (92): the space of all bounded elements in LY(£2);

— Ly(Q4): the space of all bounded elements in L°(€2;).
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Let T > 0 be a fixed time. We denote by LZ,(Qr), p > 1, the completion
of G-expectation space Lip(dr) with respect to the norm [ X||, := E[xP)M*,
1 < p < oco. Let L%(£2) be the Banach space defined as the closure of

H = {go(wtl,...,wtd) fp € C’vaip(R”X")d,O <t <...<tg,d> 1}.

As in [9-11], we can construct a nonlinear expectation E on H under which
the coordinate process (i.e. By(w) = wy) is a G-Brownian motion matrix and the
conditional expectation E(- | €;), which is continuous on L%, (Qr). Thus (B;’) is
a Gy,, 77— Brownian motion where 7;;% = E [(Bij)ﬂ and 0;;2 = —E [—(Bij)ﬂ for
each i,7 € 1,n.

Let us point out that the space Cp(€2) of the bounded continuous functions on €2 is
a subset of Lé(Q) Moreover, there exists a weakly compact family P of probability
measures on (£, B(2)) such that

E[] = sup BV[],

PeP
where ET stands for the expectation with respect to the probability P (see [11]).
We introduce the natural capacity c(-) associated to P defined by

c¢(A):=supP(A), AeB(Q).
PcP

Definition 3.1. A set A C Q is polar if ¢(4) = 0. A property holds “quasi-surely”
(g.s., for short) if it holds outside a polar set.

Definition 3.2. A process (M;)o<t<r is called G-martingale if for each ¢, M; € L ()
and for each s € [0,#] we have E(M, | Q,) = M,, where E(- | Q) is a continuous
mapping on Lip(§2r) endowed with the norm |[|-[|; ;. Therefore, it can be extended
continuously to L% (Q7).

For each p > 1, consider the following space Mg‘p (0,T) of simple type of processes,
that is
N—

n:=n(w) = Z §j(w)1[tj,tj+l)(t) for0=ty<...<ty =T,

=

<

where &; € LE.(Q,), j = 0,..., N—1. Denote by M{.(0,T) the completion of MEP(0,T)
under the norm
1/p

T
_ L P
sz = | [ B lIncol)
0

For two processes n € MZ(0,T) and & € MA(0,T), the G-Itd integrals
(fot nsdBY)o<i<T, which is a G-martingale and (f(;5 §Sd<Bij,B"’l>s)0§t§T are well



266 Sara Stihi, Hacéne Boutabia, and Selma Meradji

defined (see [2,7,10,12]), where the quadratic co-variation process (B, B*) is the
non deterministic process formulated in LZ () defined by

t t
(BY,B*) = B/Bf' - /B;idBfl — /ijldB;j.
0 0

We write <Bij> instead of <Bij, Bij> the quadratic variation of B%. In fact, <Bij7 Bkl>t
can be regarded as the limit in LZ(Q;) of

Mz

~ B(BY, B,
p:1 !

where {0 =t' <" < ... <t% =T} is a sequence of partitions of [0,7] such that
max|t$+1 ,tzw| tends to 0 when m goes to infinity. It was shown in [12] that
P

o < (BY), <ot
For the following generalized Itd formula (see [8] for the vectorial case), we use
Einstein’s notation.

Theorem 3.3. Let ¢ € C?*(R"™*™) and its first and second derivatives are in
Co.Lip(R™™). Let X = (X™) be a matriz process on [0,T] with the form

t

qu XPQ+/an d8+/913kl Bl] Bkl /ﬁ dBkl
0

where apq,Hfjgkl € ML(0,T) and BE € MZ(0,T). Then for each t € [0,T], we have,
q.s.,

p(X1) — o(Xo)

t t
_ / Dunap(X) BP9 (u)dBE + / Dorrp( Xo ) (w)du
0

t
1 ot ..
+ / { oo (X )00 (u )+§8ip/q/zmg@(}(“)ﬂ%‘1(u) P9 (u)| d(BY,B*)
0

Note that this formula remains valid if X is not a square matriz.

In the following we use the notation

ng)qutmn — Z quijﬁznnkld <Bij7 Bkl>t ]
,4:k,1

We have then d (BY, B*) = dBdB*!.
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Let S,, be the collection of symmetric n—dimensional matrices identified with
R™7+t1)/2 Recall that if g : R - R, X € S, and X = HAH” be the factorization
with H an orthonormal matrix and A a diagonal one, then g(X) = Hg(A)HT. Let
X; be a stochastic process with values in S,, such that X, € gn, the set of symmetric
matrices with n different eigenvalues. Let Ay = diag(\;(t)) be the diagonal matrix
of eigenvalues of X; ordered increasingly: A1(t) < Aa2(t) < ... < A\, (t) and H; an
orthonormal matrix of eigenvectors of X;. Matrices A and H may be chosen as smooth
functions of X until the first collision time 7 = inf {t : X;(¢) = A;(¢) for some i # j}.

As in the classical case, we define the Stratonovich differential o for two matrices
X and Y:

XodY = XdY + %dXdY and dX oY =dXY + %dXdY.

Proposition 3.4. We have for each matrices process X,Y defined as in Theorem 3.3:
(i) the integration formula by parts holds:

d(XY) = XdY + dXY +dXdy,

where dXdY is the classical matricial product,
(i)
d(XY)=dX oY 4+ X odY,
dXo(YZ)=(dXoY)o Z,
(X odYV)T =dyT oxT™.

Proof. By using the theorem 3.3 with p(z,y) = xy we obtain that
d(quY'tmn) — dXthY'tmn + qudy't’rnn + dequ't’rrm’

which implies (i).
(ii) follows from (i) and the definition of the Stratonovich differential. O

4. MAIN RESULTS

In the rest of this paper, we assume that B satisfies the following assumption:

(A) There exist an increasing real process b/ such that (B, Bkl>t = 5ik5jlb{ q.s. for
each 4, j, k,l € 1,n, where d,, is the Kronecker symbol.
We have then g2t < bj < 7°t, where 7 := maxalj and ¢ := mlnau Note that in
i“j —=
the classical case the assumption (A) is satlsﬁed Wlth b{ =1.
Let us consider the general G-stochastic differential equation defined by

dX; = g(X4)dBih(Xy) + h(X)dB] g(X¢) + a(Xy)dt + c(X,)d (B), (4.1)
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with g, h,a,c: R — R, and X € S,,, where the quadratic variation d (B) of the matrix
B is defined by d(B) := dBdB. Thus, according to the assumption (A4), d(B) is
diagonal matrix such that d (B)"” = §;;db".

Now we are able to state our main result. Note that in our model, the stochastic
differential equation studied (4.1) behaves as in the linear case. The techniques used are
inspired by the linear case, where the G-Brownian motion plays the role of a classical
Brownian motion.

Theorem 4.1. Let X; be a solution of the equation (4.1) such that X € Sn. Then
there exists a G-real Brownian motion W* (resp. 3%) such that <Wi,Wj> = §;;b7
(resp. <Bij, ﬂkl> = 0;x0;b7) for each i, j, k,l € T,n such that for t < T the eigenvalues
process Ay and the eigenvectors process Hy are solutions of the following system.:

dX; = 29(\)h(\) Y HM AW* + a(\)dt + dV* (4.2)
k

ik
i1 = 37 T { 0O @B + g0 (@IH)] + V™)

oyt
#1 - (4.3)
_ 5 Z szkoj,
k

where

AV = 6;5¢(Ni) Y (H")2dbF + dR'
k
with

AR = 37 L [(Girg® ROWROY) + 6 )R )RO) S H Y a

k#j
+ 002 )2 () (H')2a|
l
and
i 1 2 Pl\2 gpp
4@ _#%l:# =)= A )[%9 (Ai)h w)Epj(H )db
+ 2RO Y H HP v

Proof. Firstly, to simplify the notation we write ¥% instead of W(X;)¥ for ¥ =
9,9, h,a and c. Let A be the skew-symmetric matrix defined by dA = HT o dH
and let the matrix dN := H” o dX o H. By applying the G-integration formula
by parts to A = H' XH, we get dA = dN — dA o A + A o dA. Now observe that
the process A o dA — dA o A is zero on the diagonal. Consequently d\; = dN* and
0=dN% + (X\; — \;)dAY, when i # j and so

dAY = ﬁdN” for i # j. (4.4)

j i
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‘We have

dX{ =" g®dBPThY + > hPdBFgY + aVdt + Y ¢Pd (B, BY),,

p,q p,q p.q

and then

AXPdXE™ = "[g"hY g hI™ 4 g h gP™ bR db]
p,q
+ ) [hP g gFaIRP™ 4 BP goI hRP gam b
p,q

= Z [(g2)™ R RI™ 4 (g2)mhld BRL 1 (2R3 pilptm 4 (g2)7m il ) b
l

Finally we get

dXZjdthm _ Z [(92)ikhljhlm + (gQ)kjhlihlm
1 (4.5)
+(g2)imhljhlk+ (g2)jmhlihlk} dbi

A simple calculation of dNN gives
1 1
dN = HTdXH + 5HTdXdH + 5dHTdXH (4.6)

and consequently the G-martingale part of dN equals the G-martingale part of
HTdX H. We have

ANY9IN*™ = (HTaX H)(HTdX H)*™,
which equals

Z HpidququHp’kpr’q'Hq'm’
p,q;p"5q’
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and taking into account the formula (4.5) with (p,q,p’, ¢') instead of (4, j, k, m), we get

ANTANS™ =37 ST HP O HY O [(g2) R 4 (gP) i n
Lopap'd’
+(g?)P7 Rlap? 4 (92)qq/hlphlp/} b’

— Z ZHZ” pp gr'k ZHthlthq HI ™| qpt

p.p’ q,q’

(1

30> BB EPR ST BRI HE | b
l

Kb q'p

(1)

+ Z Z HPZ qu Hq m Z HQJ hlthp HP 'k dbl

L [pd a,p’

(ITI)

+ Z ZHqJ yaa’ o Zszhlphlp HPR| apl.

Uoled p.p’

(1v)

Now observe that

ZHPi(g2)pp,H;le — (HTQQH)’LIC _ gQ(A)zk — 6ikg2(Ak)’
p.p’

which implies that

(1) = ding® (k) Y HY (D h'an!e ap'y g™

9,9’ l
= dirg?(\e) D HY (h(X)d (B) h(X))™ HT™

= g (\) (HTh(X)d (B) h(X)H)'™.
Similarly, we have
(I1) = §j9* (M) (HT h(X)d (B) h(X)H)™,

(ITI) = 6img* () (HTh(X)d (B) h(X)H)*,
(IV) = 8mg” (Am)(HTh(X)d (B) (X )H)™,
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and so
ANYAN*™ = §;.6*(\e)(HTh(X)d (B) h(X)H)'™
+ 5jk92(>‘k)(HTh(X)d (B) h(X)H)™
+0mg” (A m)(HTh(X)
which implies, by using the fact that h(X)H = Hh(A), that
AN dN*™
= dig” (\i) (h(A) HT d (B) HR(A)™™ + 8;.9% (\e) ((A) H T d (B) Hh(A))"™
+ Gimg® (Am) (MA)HTd (B) HR(A))™ + §jng®(A) (h(A) HT d (B) Hh(A))™

(4.7)
Since (HTd (B) H)" = Y_HY"H'db!, then
l
(R(M)HTd (B) Hh(A))" = h(A\)h(X;) > HYHY db'.
l
It follows from (4.7) that
ANYAN'™ = 53.9° (M) (A (M) Y HY H'™db!
l
+ 859" (M)A h(Am) Y H' H"™dbf
: . (4.8)
+ Gimg” (Am)h(A)B(N;) > HHY !
l
+ 87mg® Am)R(ON)R(A) > HH™db,
l
and so,
AN"ANY = 48,567 (A\)h*(N) > (H')db'. (4.9)

l

It follows that there exists a G-real Brownian motion W* satisfying <Wi, wi > = 0;;b7
such that the G-martingale part of d\; equals

29(\)h(N) > HYdWw* (4.10)
k

Now observe that the finite variation part dF' of dN is
dF, = HTaHdt = a(A,)dt,

so that F' is diagonal and B
dF}" = a(N(t))dt. (4.11)
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Thanks to the formula (4.6) the integral part dV, with respect to db’, of dN equals
1
dV = H"cd (B) H + i(dHTdXH + HTdXdH)
1
=c(AN)H"d(B) H + 5 (ANdA + (dNdA)T).

Note that (c(A)HTd (B) H)" = &;;c¢(\;)>_(H*")2dbk. We have then, if i # j,
k

iy _ ik kj _ ik kj
(ANdA) ZdN dA Z py Ak AN*dN
k#j
=> y { kg M) h(A)R(A) Y H™ HY b
k#j l

g2wmw)h(mZH“HUdbl]
l

and

(ANdA)" ZA : [ M) h2 (N )Z(H”)del+g2(>\i)h2(/\k)Z(Hlk)2dbl],
- Nk

l l

which imply that, for i # j

v =3 A l(@-kg?uk)huk)hun + 92(Am(&-)hw)>ZH“H”dbl] ,
k#j l
(4.12)

and

V“ _ Z Hk:z dbk+z YT |: 2(>\k)h2()\z)Z(Hh)2dbl

’ e : (4.13)

+ 92()\i)h2()\k)Z(Hlk)2dbl:| :
l

The formula (4.2) follows from (4.10), (4.11) and (4.13). In order to find a stochastic
differential equation of H;, we deduce from the definition of dA that

dH:HodA:HdA+%deA:HdA+%HdAdA. (4.14)

Thanks to the formula (4.4) we have

(dAdA)T = " dA™dAN

— 1 2 lk: l
= ¥ w0 ) _(H b (415)

ki, k4]
+ 2 (AR (A)R(A) D H“Hljdbl} .
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We deduce from the formula (4.8) that if ¢ # j,

NN = [gQ(AnhQ(AJ—) D (HID A+ g ()R> () Y (HY)? ] :
l

l

then the G-martingale part of dN* is

[g(M)h(Aj) ST HYAR + g(A)h(A) D H“dﬂ“}

! I
= [9ODROGEHY + 9RO (ABH)"]

where 3 := (%) is a G-Brownian motion matrix satisfying the assumption (A), so that
ifi#j
N G
Aj— N
1
)\ -\

(4.16)

L9 (ABH) + g(Ag)h(X) (dBH)"] + dVY.

The formula (4.3) follows from (4.14), (4.15) and (4.16). The proof is complete. [

Proposition 4.2. Let A = (\;)i=1,...n be a process starting from A1(0) < ... < X, (0)
and satisfying (4.2) with functions a,c, g, h : R — R satisfying the following hypothesis:

(i) There exists C > 0 such that
[I(x) = I(y)| + [7°T*(z) = > (y)| < Cle —y|, Va,y€R,
for I =a,c,h? ¢g? and J = g and h.
(ii) There exists K > 0 such that
5% (2)h*(2) — G (Yh* ()| < K [& —y|*, Va,y €R,
(iii) h? is increasing and g* is decreasing on R.
Then we have T = 400 q.S., that is the distinct eigenvalues of X will never collide.
Proof. As in the proof given by [5,6], we set
U=-> log(}
1<j

By using G-1t6’s formula, we have

B —d)\; a1 =d(\) —d ()\;) d (M, Aj)
dU__ZL\j—)\i+)\j—)\z+2[()\ —Ai)? +(>\j—>\i)2+2(/\j—)\i)2”'

In fact ‘
d (N, Aj) = dhid)j = 46,597 (N2 (X)) > (HF)2db",
k
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and so

A — L=d ) +d )
W= 5 —)\ 32 =A%
i<j 1<J

By using the G-SDE of the eigenvalues (4.2),

g(A)RN) S HRdW™ — g(A;)h(A;) 3 HE I dW*
k

_ %
dU = zz Y
1<J
a(Xi) —a(N;)
Ly e —aly)
i<j Aj = Ai
dVi — qvii
1D D v v PPy
1<j
g*(Ni)h*(Ni) ;(H’”)dek +92()\j)h2(/\j)§(1fkj)2dbk
+2) ;
oy (Aj — i)
=dM + dP.

where

g(AD)h(N) XS HEAWE — g(A)h(N;) 3 HR I dW*
dM =2 k k
2 N

1<j

We will show that dP is bounded on any interval [0, 7]. To this end, we set
dP = dA' + dA® + dA®
and

d™ = g?(A)h* (M) D (H™)?db' + g (A)h*(Ag) > (H™)?db* for u =1, j,
l l
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where
Z/ )\ — )\ ds,
z<j
t t -
</dVJ’ avji 2/ dy )
2.2
AV Y REYEY)
(N (HE)? = () (H1)?)
!
[/ sy db,
1<j 0
/ dk [l dki
o ke e
) )\—/\k ) (/\J—)\l)k#/\]—)\k
t i
2 s
" / gy —w]
0
and
t (h2(N;) = R* (X)) (g2 (Nj) So(HY 2dbt — g® (X)) Do (H')2db')
3 _ 1 1
4 _22/ (Aj = Ai)? .

1<J 0

By using the hypothesis (i) and the fact that > (H")% = 1, we get
I

M)
All < /ud <c?
At 2] A

-1,
2 ?

(M) (@ 9* () = a?9* (M)

A3<QZ/ (R2(N) =

s
WY
2 ) <AJ )
and so
’Ag‘ < C?*p(p—1T.
We set
£ (e (HY)? — e(Ng)(HY)?)db,
Af = / l :
i=2 PYREDY

i<j
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then we have

dkz
A? = A} + / [
; N = A) (A —N)
_ - (4.17)
d’;J 2d7 }

2y 00y~ A Oy - A2

Since

i 24l
Z(Z On —/\k o — N Z;(Aj—Ak)(Aj—Ai)+(Aj—Ai)2)

¥y (M — A)dPF — (A — X)d™* + (A; — \i)d??
(A = X)) (A — X)) (N — Ni) ’

i<j<k

then by the same argument used in [5], with

DI =\ (g* () = * () Q_ (WP (M) (H")? — W3 (\) (H™)?)db')

l

Hg® (M) = g2 ) Q_ (WP (N)(HY)? — k2 (A (H')?) ')

l

X (>\z — )\])
= (d" —d™ — d7* + d*) (N = \)),

we obtain that
A% = A 4 AP 4 AS

Dj’Lk: Dzk] ngl)
Z / (M = A7) Ak = M) (A — )

7<]<k

where

and

Ak — M)A — (A — Al — (A; — A)dkk
Z / /\k =AMk = A) (A — ) '

z<7<k

According to the facts that Y (HY)? = 1 and g%t < b. < 7*t. We have
1

dif — dif = POg)RA () 3O (H')2db, — g* ()3 (N) S (H')2db,
. l
< @) — g M) () ds
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and so
t
I _ it kk _ JiJ
AE _ } / d d B ds d’ )
21<] e A — )\z Aj— N\ Ak — Aj
<1 3 / ( >R (N) — a*g* ()R> (N)
2 iS5 A — N Aj— A
o’ g*(Ae)h? () = %g* )P (V)
s.
Ak — Aj
Thus

EHESY / [72g2(A)R*(N;) — a2g2 (X)) R ()|
i<j<k Ak = A Aj— A
f22)\‘h2)\‘_ 22/\ h2)\
Jr‘O'Q(J) (J) QQ( k) ( k)’)ds,
Ak — A

then thanks to the hypothesis (ii) we obtain
|A?‘ <K Z T < oo.
i<j<k

On the other hand, we have

¢S (e(N) (H')? = (X)) (HY)?)| dbl,
|A? S Z/ : )\j — >\i
1< 0
. ¢ C(Az);(H“) c(A );(H”)
=7 Z N
1<g 0
o [l — eyl ds
< Z/ Y v—
1<J 0
then
|A4| < CP(P )*QT
b= 2

Obviously, we have

t

Dyt [ (0y) — PO)@R(N) — a2h2 (M)
!uwwmm—murmngz O = A)0% = A -

[ (O) — 2O @R () — a2h2 (M)
*! O — ) 0% — M) .
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which implies that

t
l)ﬂk
< 20°T,
0/ e = X)) A = A) (A —N) | —

and so
A7 <3C°T > <.
i<j<k

Finally, we obtain that |[A?| < C'T and dP is bounded on any interval [0, 7). Since M
is a classical martingale under each P € P, then by using McKean argument (see [5])
we deduce that 7 =00 P a.s. for each P € P. The proof is complete. O

5. EXISTENCE AND UNIQUENESS

Faizullah [3], Graczyk and Malecki [5] have discussed and shown by different methods
the pathwhise uniqueness of the solutions of stochastic differential equations. We give
another result concerning the stochastic matrix differential equations (4.1). To this
end, we will need the G-Burkholder-Davis—Gundy inequalities.

Lemma 5.1 (see [4]). Let (B;) be a real G-Brownian motion. Then we have:
(i) ifp>1, ne M&([0,T))and 0 < s <t < T, then

u p

t
E | sup /md<B>T <Ci(t—s)P! /E[Inulp} du
s<u<t

where C1 > 0 is a constant independent of 7,
(i) if p > 2, then

u p

¢
E | sup /nrdBT < Oy |t—s\%_1/E[|nu|p] du,
s<u<t

where Cy > 0 is a constant independent of 1.

Theorem 5.2. Assume that the function g,h,a,c : R — R, satisfy the following
conditions:

(i) Lipschitz condition: For all X, Y € R"*™
[J(X) = (V)P <AIX -V,

where J(X) = g(X)*h(X)!, a(X) and c(X) respectively and A is a positive
constant.
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(ii) Linear growth condition: For all X € R™"*"
[T < K(1+]X[),
where J(X) = g(X)*h(X),a(X) and ¢(X) respectively and K is a positive
constant. Then the pathwise uniqueness hold for X;.

Remark 5.3. A typical example of (i) and (ii) is g(z) = a(x) = ¢(x) = z and h(z) =1,
which corresponds to the SDE

dX, = X4dB; + dBF' X, + X, dt + X,d (B), .

Remark 5.4. We mean by “the pathwise uniqueness holds” that if X*, k = 1,2 are
two solutions of the SDE (4.1) then the equality between the initial values xj implies
that X} = X? g.s. for each t € [0, 7).

Proof. We begin with the proof of the uniqueness. We have

dXY = "(g(X)*h(X)Y + g(X)¥ h(X)")dB¥ + a(X)Pdt + ¢(X)db.  (5.1)
Kl

Let X (zx),k = 1,2 be a solution of the SDE (4.1) with the initial value z; = (:c}cj)
and let - _ _ _ _
JIM(X) = g(X)*h(X)V + g(X) h(X)"

for X € R™*", Then we have for u <t

ij ij|?
Ty — Ty

| X7 (21) — X7 (2y)]” < C{

w 2

30| [ 1)) = X () B
k|7

w 2

+ / (a(Xa(1)) — aXa(22))")ds
0
2

¥ 7<c<xs<x1>>”‘ - X))t }.

0

By using the BDG type inequalities with p = 2 and Lipschitz conditions, we obtain

E(Zlgz | X (21) — Xo(2)]?)

t
< C(T,n) |21 — 2f? + /E(sup X (21) — Xa(22)[2)ds| .
0

u<s
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We conclude, by using Gronwall’s lemma, that

Bfsup | X, (1) = X, (w2) ) < C(Tum) oy = ol ST,
u<t

In particular, if x1 = z2 we have the pathwise uniqueness of X;. For the existence of
the solution of (4.1), we consider a Picard sequence X = (™ X%),,en defined by:

OXH =zU eR, 0<t<T,
t

t
X =ty /J”’” (mX,) B’“l+/a(me)ijds+/c(me)ijdb§ (5.2)
0

k.l "o 0
and then
. 2
‘m+1Xtij ? <c ’xij|2 /ngkl (" X,)dB"
0
¢ t 2
+ /a(me)ijds + /c(mXS)ijdbj
0 0

By the BDG type inequalities and linear growth conditions, we have
¢
B XIP) < @) + [ B(mx)s),
0

which implies that
t
B < @)l + T+ [ B(m X)),
0

and so . ) )
E(’m—i—lXt‘ ) < C/(T, n)(|x\2 +T)€C (Tn)t

Now, we will prove that (™X) is a Cauchy sequence in LZ,. We have

kX ki Z/(Jijpl(kxs) — JUPL(P X)) dBY
(a(*X)" = a(*~' X,)")ds

(e("X)7 = e("T1 X)) b
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By an argument similar to the one used in the proof of the uniqueness, we obtain that
t
B(*X, - FX|%) < ¢"(Ton) ( / B(*X, - k-1Xs|2>ds>
0

t t1
S CH(Ta n)2 (//EA(’k_lxtz - k_th2’2>dtldt2>

0 D (5.3)
t th
<C”Tnk+1(// /E 1 —x’z)dt1~-~dtk>.
0

On the other hand, we have

B X, — ) = B(X (30 79@)BE + ale) Ity + ()8, ) )
¥ p,q

Z Z (J9P(2)) 2 E(BY)? + (a(x)7)>T?

n <c<x>“>2E<bzk>2}

< K(n,z,7,T),
which imply that
2 (C(T, ) T)!
||k+1Xt o kXt||2 _ E(|k:+1Xt o kXt| ) K( ’T)W
and for each p,m € N
m+p—1
I, = mxf, < 3 X - X, < Z [0 = X,
k=m
 RGEED S [T

(k+1)!

k=m

Then ("™X}) is a Cauchy sequence. Let X; be the limit of ™ X;. In order to complete
the proof, we must show that X, is the solution of the equation (4.1). To this end
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we have just to prove that

t 2
lim E( / (JUPI(MX,) — Jiipq(xs))d35q> =0,

m—00
0

m—0o0

lim E({(a(mxs)iﬂ' - a(Xs)ij)ds> =0

and
t

2

7}%1_1}1100E</(c( X)) —ce(Xy) J)d<B“>> =0.
0

The first and the third equalities are guaranteed by Lipschitz condition and BDG

inequality. For the second inequality, we have by using Holder’s inequality and Lipschitz

condition

(](a(mxs)iﬂ' - oL(XS)iJ')ds>2 < TA] "™ X, — X,|* ds.
0 0

We conclude by taking G-expectation E in both sides and by using the fact that
™ X converges to X. O
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