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Abstract. In this paper, an incompressible, two-dimensional (2D), time-dependent, Newto-
nian, laminar, and internal channel fluid flow over a skewed equilateral cavity is simulated 
using the finite difference method (FDM) and alternating direction implicit (ADI) tech-
nique. Navier-Stokes equations are solved numerically in stream function-vorticity formu-
lation. The goal of tackling this problem depends on its academic significance by studying 
the difference between lid-driven and shear-driven cavity flows in terms of the formation of 
Moffatt eddies at the sharp corner, also to obtain the length and intensity ratios of these 
counter-rotating vortices. The value of velocity components along the centerlines of the 
skewed cavity was revealed at low and intermediate Reynolds numbers (Re), typically 
(Re = 200 and 2000) at two different skew angles of mainly 30° and 45°. Likewise,  
the blocked-off regions’ method is used to deal with the geometry of the skewed cavity  
especially the sharp corners. Furthermore, as Re increases, the main vortex approaches  
the skewed cavity center and the counter-rotating vortices get bigger in size and intensity, 
and their number increases.  
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1. Introduction  

The flow inside a two-dimensional (2D) lid-driven cavity was a motivating  
exploration field for many researchers as it is considered as a benchmark problem. 
Likewise, it is common because of its basic geometry and the significance of  
understanding the dynamics of primary as well as secondary generations of vortices 
and their location at the corners of the cavity where eddies are formed. Several 
numerical methods are examined by studying the 2D and 3D lid-driven cavity  
with different shapes and aspect ratios at low and very high Reynolds number (Re). 
The following articles are used by a plethora of researchers to verify their results 
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(Ghia et al. [1], Gupta and Kalita [2], Ghadimi et al. [3], Zhang et al. [4], Ahmed 
and Kuhlmann [5], Abu-Nada and Chamkha [6], Botella and Peyret [7], Pinarbasi 
et al. [8], Wahba [9], and Kuhlmann and Romanò [10]). However, Romanò  
and Kuhlmann [11] studied the motion of suspended solid particles in a fluid for  
an extensive range of geometry and flow factors for many well-known problems 
using the smoothed-profile technique that was combined with high-order spatial 
discretization. The outcomes from their proposed method were accurate and  
efficient.  

On the other hand, the orthogonal grid mesh will be used to solve channel flow 
over a skewed equilateral cavity using the finite difference method (FDM) and  
alternating direction implicit (ADI) scheme as stated by Peaceman and Rachford,  
Jr [12], besides a well-established technique called blocked-off regions’ method to 
eliminate the unwanted region from the computational domain by setting the value 
of the variables at the cells which are located in the blocked regions to zero.  

The benchmark problem of the flow inside a lid-driven skewed cavity was 
firstly presented by Demirdžić et al. [13]. He used the multigrid and finite volume 
methods on a non-orthogonal grid mesh and studied the fluid flow and heat transfer 
in two cases for investigating novel solution techniques. The skew angles in the 
two studied cases were 30° and 45°.  

Krishna et al. [14] examined in detail the impacts of Darcy number, Re, aspect 
ratio, porosity, and the skewness angle on the fluid flow in a lid-driven cavity filled 
with a permeable medium which was saturated with a liquid. They discovered that, 
with the increase in skew angle as well as the Re and with the decrease in Darcy 
number, the maximum stream function value decreased. Mohapatra [15] inspected 
the laminar and 2D fluid flow in a lid-driven skewed cavity. His results were  
obtained for a skew angle equal to 30° and 45° as well as Re values equal to 100 
and 1000.  

Thohura et al. [16] numerically studied the case of Non-Newtonian laminar 
fluid flow in a lid-driven skewed cavity employing a power-law viscosity model. 
They took into their consideration the effects of the skew angle (� = 15° to 165°) 
for both shear-thickening and shear-thinning fluids, the Re was (Re = 100, 200, 
300, and 500) as well as the index of the power-law (� = 0.5, 1, and 1.5). Erturk 
and Dursun [17] revisited the fluid flow inside the lid-driven skewed cavity 
benchmark problem with more values of skew angles generally from 15° to 165°. 
They utilized a numerical technique that was stable and very effective even  
at severe skew angles. Moreover, they obtained highly accurate results utilizing  
a fine grid typically (512 x 512). The results were found at low and high values of 
the Re specifically at 100 and 1000. 

Romanò and Kuhlmann [18] numerically studied the motion of a weighty tracer 
in a 2D shear-driven cavity. They used a smoothed profile technique along with  
a discontinuous Galerkin finite element approach. Nonetheless, they compared 
their results with those found by single coupling and found that the particles’ true 
limit cycle could be approximated by the single coupling method using certain  
parameters like size and density. De Vicente et al. [19] linked between the centri- 
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fugal instabilities’ beginning and their last appearance in a fully saturated open 
cavity flow. They conducted a linear 3D modal instability analysis of steady 2D 
states that existed in an open cavity with an aspect ratio of 2. Their results show 
that the structures of linear analysis are mostly compatible with the fully saturated 
experimental flow. 

Moreover, the main cause of vortex generation inside the shear-driven skewed 
equilateral cavity will be the shear-force of the fluid layer above the cavity instead 
of a moving lid. The effect of the Reynolds number and skew angle on the large 
vortex as well as corner vortices generated at the sharp corner of the cavity and 
their length and intensity ratios as well as the centerline velocity profiles are found. 
The obtained results are compared to Moffatt eddies, and they were in a very good 
agreement. From the past review, it can be seen that the research purpose has not 
been investigated previously despite its academic value for the study of vortices’ 
dynamics at sharp corners especially for the channel flow over a skewed equilateral 
cavity.  

2. Mathematical formulation 

2.1. Problem statement 

Consider an incompressible, 2D, time-dependent, viscous, Newtonian, laminar, 
internal fluid flow in a channel over a skewed equilateral cavity. Figure 1 shows 
the dimensions of both the channel and the skewed cavity. The channel has an inlet 
height (ℎ�) and the length from the beginning of the channel to the first tip of  
the skewed cavity (��) and from the second tip of the skewed cavity to the end of 
the channel (�	), each will be taken equal to (3) times to the inlet height. Hence, 
the total length of the channel is equal to (6) times the inlet height and the length of 
the skewed cavity (ℎ). Moreover, the skew angle of the cavity with the horizontal 
is (
). The selected values will be equal to one as follows; ℎ = ℎ� = 1 to be  
dimensionless. 

In this problem, the non-dimensional Reynolds number can be described as 

Re = ���
�  where � is defined as the kinematic viscosity, � is defined as the inlet 

mean velocity (it equals two-thirds of the maximum inlet velocity) and �� is de-
fined as the hydraulic diameter of the channel inlet where it equals twice the inlet 
channel height, i.e. �� = 2ℎ�. 

In this study, the effect of Re, as well as the skew angle, will be revealed for the 
following values Re = 200 and 2000, and 
 = 30° and 45°. The shear-driven skewed 
cavity flow will have the main primary vortex besides secondary vortices at the 
acute and sharp corners. Furthermore, the flow at the inlet boundary has a parabolic 
velocity profile (fully developed flow) which is the Dirichlet type boundary condi-
tion (BC). However, the outlet velocity profile will also be parabolic according to 
the given dimensions. The value of the stream function (�) and the vorticity (�) 
can be determined by integrating and differentiating the �-velocity with respect to 
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the �-coordinate, respectively. The Exit flow has Neumann type BCs that are  
introduced for the three physical quantities: velocity, stream function, and vorticity. 
The no-slip velocity BC will be applied to all rigid walls, also the stream function 
values are prescribed while the vorticity values can be found using the Taylor series 
expansion with a truncation error from the first order also the inclined BCs can be 
found using the formulas described by Jenson [20] and used by Haese and Teubner 
[21].  
 

 
Fig. 1. Channel flow over a skewed equilateral cavity 

2.2. Governing equations 

The governing equations are the continuity Eq. (1) and the 2D Navier-Stokes 
Eq. (2) as well as Eq. (3) in Cartesian coordinates that are given as follows [22]  
and [23]: 

��
�� + ��

� = 0, (1) 

��
�# + � ��

�� + � ��
� = − 1

%
�&
�� + � '�	�

��	 + �	�
� 	( + )* , (2) 

��
�# + � ��

�� + � ��
� = − 1

%
�&
� + � '�	�

��	 + �	�
� 	( + )+. (3) 

where %, �, �, �, &, and ) are fluid density, kinematic viscosity, velocity compo-
nents along � and   axes, pressure, and gravitational acceleration, respectively.  

For a two‐dimensional flow, the vorticity (�) at a certain fluid point is given by 

� = ��
�� − ��

� . (4) 
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Defining the stream function (�) in Cartesian coordinate through 

� = ��
� ,  � = − ��

��. (5) 

The dimensionless differential form of the parabolic vorticity transport Eq. (6) is  

��
�# + ��

� 
��
�� − ��

��
��
� = 1

 Re '�	�
��	 + �	�

� 	 (. (6) 

Now, after the substitution of Eq. (5) in Eq. (4), the final dimensionless  
differential form of the elliptic stream function equation, known as Poisson  
equation (7), is  

�	�
��	 + �	�

� 	 = −�. (7) 

Once the stream function has been computed, the velocity components can be 
found using Eq. (5). The complete ADI method is described by Kamel et al. [24]. 

3. Numerical discretization and boundary conditions 

To discretize the computational domain, a structured collocated grid will be 
chosen for this problem where the value of any variable (�, �, �, and �) will be 
stored at the same point and at two different time steps on a five-point stencil. 
Also, a forward difference for time discretization and central difference for spatial 
discretization known as (FTCS) will be applied for the first and second partial  
derivatives in Eqs. (6) and (7). The resulting accuracy from using the ADI method 
along with the FDM will be from the second-order in time and space O((∆#)	 /, (∆�)	 and /(∆ )	) and it is unconditionally stable according to Hoffmann and 
Chiang [22]. Moreover, the benefit of using the stream function-vorticity form is 
the satisfaction of the continuity Eq. (1). By solving the vorticity transport Eq. (6), 
the vorticity value can be obtained. The vorticity values will then be introduced to 
the Poisson Eq. (7). The inflow, outflow, and solid BCs are introduced in Table (1) 
for all variables (�, �, �, and �).  

Where the subscript (0) denotes for the points on the rigid inclined wall and  
the subscripts (11) and (12) denote for the points adjacent to the rigid inclined wall 
in the  -direction and the �-direction, respectively. 
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Table 1. Boundary conditions for channel flow over a skewed equilateral cavity 

Boundary  

code and type 

Physical quantity 

Velocity (�, �) Stream function (�) Vorticity (�) 

B1B8 (Inlet) 
� =  6 ∗ (� − �
), 

� =  0 
� =  −2 ∗ �� + 3 ∗ �
 � = − ��

�� =  12 ∗ � − 6 

B6B7 (Exit) 
��
�� = 0, ��

�� = 0 
��
�� = 0 

��
�� = 0 

B7B8 (Top) 
� =  0, 
� =  0 

� =  −2 ∗ ℎ�� + 3 ∗ ℎ�

 �� = − �
�

��
 = 2(�� − ���)
(Δ�)
  

B1B2, B3B4, 

B5B6 

 (Bottom) 

� =  0, 
� =  0 

� =  0 �� = − �
�
��
 = 2(�� − ���)

(Δ�)
  

B2B3, B4B5 

(Inclined) 

� =  0, 
� =  0 

� =  0 

�� = − �
�
��
 − �
�

��
 = 

 

= 2(�� − ���)
(Δ�)
 + 2(�� − ��
)

(Δ�)
  

 

 
 

 
 

 

 
 

 

 

4. Numerical computations 

The numerical computation of the flow variables (�, �, �, and �) have been 

obtained for the current problem with the assistance of a computer software code 

which has been verified and validated by studying the one-sided lid-driven  

square cavity problem by Kamel et al. [24]. The solution convergence for each Re 

was measured by the residual of the vorticity Eq. (8) as indicated in [3], which  

is given as:  

�� = �  ��,!"#� − ��,!" $

�%"&,!%"'

�%
,!%

. (8) 

where �� is the vorticity residual and ) is the number of iterations and the conver-

gence criterion is set to (10
–10

) for each Re. Likewise, grid independence study for 

current work at (Re = 200 and * = 45°) is shown in Table 2 and it is obvious that  

a grid of (466×115) produces a small difference in the stream function value  

compared to the grid of (239×59) while it is almost double the grid size. Therefore, 

the (466×115) grid is enough for the simulation, and in the event of a different Re 

or skew angle, a grid study was done in the same manner.  
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Table 2. Stream function and vorticity values and the main vortex center at Re = 200 
and 
 = 45° 

Grid size ?� ?  �@�; �A.B. �   

70×18 0.1 0.1 –0.0239 –1.1666 3.8551 0.5021 

90×23 0.08 0.08 –0.0223 –1.0733 3.8539 0.4656 

120×30 0.06 0.06 –0.0193 –1.2831 3.8235 0.5298 

179×45 0.04 0.04 –0.0178 –1.0689 3.7753 0.5044 

239×59 0.03 0.03 –0.0173 –1.0284 3.7647 0.5004 

466×115 0.015 0.015 –0.0167 –1.0012 3.7785 0.4942 

5. Numerical results 

In the case when the skew angle is 30°, Figure 2 shows the streamlines of the 
large primary vortex that dominate the skewed cavity and also presents the smaller 
secondary vortices which are generated at the sharp corner. Additionally, as Re  
increases, the primary vortex forms a line that is approximately horizontal and 
connects the two tips of the skewed cavity. Figure 3 illustrates the vorticity con-
tours which in turn represent the location of the main vortex and the smaller corner 
eddies. As Re increases, the vorticity contours start to take the shape of the large 
vortex while the contours of the smaller secondary vortices did not seem to change 
in their shape. However, the intensity and size of the smaller secondary vortices  
increased which is indicated by the vorticity contours concentration.  
 
(a) 

 
(b) 

 
Fig. 2. Streamlines for Re (a) 200 and (b) 2000 and skew angle is 30° 
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(a) 

(b) 

Fig. 3. Vorticity contours for Re (a) 200 and (b) 2000 and skew angle is 30°

It is detected from Figure 
centerline �-velocity along A
more wiggles in the profile and the cause of the velocity reduction may be due to 
point (A) located at the top of the cavity entered the large vortex (instead of remain
ing in the freestream) where energy loss occurred. However, the difference between
peaks and bottoms in the profiles of the centerline 
 
(a) 

Fig. 4. Centerline velocity profiles for channel flow over �, along A

Figure 5 shows the difference between the velocity profiles of the channel 
flow at the inlet as well as the exit boundaries of the c
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. Vorticity contours for Re (a) 200 and (b) 2000 and skew angle is 30°

It is detected from Figure 4 that, as the Re increases, the maximum value of the 
velocity along A-B at the top of the skewed cavity decreases with 

more wiggles in the profile and the cause of the velocity reduction may be due to 
point (A) located at the top of the cavity entered the large vortex (instead of remain

ream) where energy loss occurred. However, the difference between
peaks and bottoms in the profiles of the centerline �-velocity along C-D increases. 

(b) 

 
. Centerline velocity profiles for channel flow over a skewed equilateral cavity (a) 

, along A-B and (b) �, along C-D and skew angle is 30° 

shows the difference between the velocity profiles of the channel 
flow at the inlet as well as the exit boundaries of the channel at Re = 200 and 2000. 

 

 

. Vorticity contours for Re (a) 200 and (b) 2000 and skew angle is 30° 

that, as the Re increases, the maximum value of the 
B at the top of the skewed cavity decreases with 

more wiggles in the profile and the cause of the velocity reduction may be due to 
point (A) located at the top of the cavity entered the large vortex (instead of remain- 

ream) where energy loss occurred. However, the difference between 
D increases.  

a skewed equilateral cavity (a) 

shows the difference between the velocity profiles of the channel  
200 and 2000. 
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Both of them at a skew angle of 30
is parabolic and nearly the same as the inlet velocity profile. 
 
(a) 

Fig. 5. Velocity profiles at th

It is noteworthy to say that the Re of 200 and 2000 in the current work (shear
driven cavity) is comparable to Re of 100 and 1000 in the lid
lem because, in this problem, the non
the hydraulic diameter (
channel height, i.e. �ℎ|�@�;| as well as �@D*
for present and Erturk and Dursun 
corresponding to |�@�;
Moreover, the (�-locations) of the vortices appears inside parentheses are measured 
from the beginning of the very bottom left corner of the skewed cavity for a fair 
comparison.  

Table 3. �@�;, �
Property 

Re = 200

�@�; –0.0072

�A.B. –0.8544

� 3.8806 (0.0146)

  0.3190

�@D* 7.9896E

�A.B. 0.0051

� 4.4030 (0.5369)

  0.1293
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Both of them at a skew angle of 30°. This demonstrates that the exit velocity profile
is parabolic and nearly the same as the inlet velocity profile.  

(b) 

 
. Velocity profiles at the channel inlet and exit for Re (a) 200 and (b) 2000 

and skew angle is 30° 

It is noteworthy to say that the Re of 200 and 2000 in the current work (shear
driven cavity) is comparable to Re of 100 and 1000 in the lid-driven cavity pro

problem, the non-dimensional Reynolds number is based on 
the hydraulic diameter (Dh) of the channel inlet where it equals twice the inlet = 2ℎ�. Also, Table 3 illustrates that as the Re increases

@D* values and their corresponding |�A.B.| values also increase 
for present and Erturk and Dursun [17] results except for the values of 

@�;| that decreased as indicated by Erturk and D
locations) of the vortices appears inside parentheses are measured 

from the beginning of the very bottom left corner of the skewed cavity for a fair 

�@D*, and �A.B. values and location of vortices’ centers at 30°

Present at 
 = 30° Erturk and Dursun [17] at 

Re = 200 Re = 2000 Re = 100 Re = 1000

0.0072 –0.0157 –0.062347 –0.071681

0.8544 –1.3646 –5.46336 –

3.8806 (0.0146) 3.8834 (0.0174) (–0.0074) (0.0478)

0.3190 0.2972 0.3516 0.2803

7.9896E-06 3.6487E-04 1.0998E-04 3.4432E

0.0051 0.1205 0.060074 1.32398

4.4030 (0.5369) 4.2792 (0.4131) (0.5003) (0.3994)

0.1293 0.1557 0.1396 0.1348

37

. This demonstrates that the exit velocity profile 

e channel inlet and exit for Re (a) 200 and (b) 2000  

It is noteworthy to say that the Re of 200 and 2000 in the current work (shear-
driven cavity prob-

dimensional Reynolds number is based on 
) of the channel inlet where it equals twice the inlet 

illustrates that as the Re increases the 
values also increase 

results except for the values of |�A.B.|  
that decreased as indicated by Erturk and Dursun [17]. 

locations) of the vortices appears inside parentheses are measured 
from the beginning of the very bottom left corner of the skewed cavity for a fair 

location of vortices’ centers at 30° 

at 
 = 150° 

Re = 1000 

0.071681 

–4.35978 

(0.0478) 

0.2803 

3.4432E-03 

1.32398 

(0.3994) 

0.1348 
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The |�@�;| as well as �@D* values and their corresponding |�A.B.| values are 
greater in the case of a lid-driven (Erturk and Dursun [17]) than a shear-driven 
(present) skewed cavity because the lid-driven cavity is a confined space where 
there is no other space for the vortices to extend or stretch. On the contrary, in the 
current study, the vortices are left to stretch or extend freely.  

The intensity ratio of the corner eddies is verified by comparison with Erturk 
and Dursun [17] and Moffatt [25] as shown in Table 4. The present ratio at  
(Re = 200 & 
 = 30°) is higher than that of Erturk and Dursun [17] at (Re = 100  
& 
 = 150°) but both are higher than that of Moffatt [25] at 2� = 30° at low Re. 
Nonetheless, the present ratio at (Re = 2000 & 
 = 30°) is higher than that of  
Erturk and Dursun [17] at (Re = 1000 & 
 = 150°) and are almost half the value of 
Moffatt [25] at 2� = 30°. 

Table 4. Comparison of the ratios of intensities of successive sharp corner eddies at 30° 

The ratios of intensities of successive sharp corner eddies |�@�;|/�@D* and (ln (|�@�;|/�@D*)) 

Present at 
 = 30° Erturk and Dursun [17] at 
 = 150° Moffatt [25] at 2� = 30° 

Re = 200 Re = 2000 Re = 100 Re = 1000 Low Re 

901.17 (6.80) 43.03 (3.76) 566.89 (6.34) 20.82 (3.04) 411.58 (6.02) 

 
In the second case when the skew angle is 45°, Figure 6 is similar to Figure 2, 

nonetheless they have some major differences such as the primary vortex is larger 
and the number of the smaller eddies is lesser when the skew angle is 45° than 30°. 
 
(a) 

 
(b) 

 
Fig. 6. Streamlines for Re (a) 200 and (b) 2000 and skew angle is 45° 

Figure 7 illustrates the vorticity contours which in turn represent the location of 
the main vortex and the smaller corner eddies. Moreover, as Re increases, the vor-
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ticity contours start to 
smaller secondary vortices did not seem to change in their shape as in the earlier 
case. Furthermore, their intensity and size increased with more generated smaller 
eddies, as indicated by the co

It is noteworthy to say that the number of the sharp corner eddies when the 
skew angle is equal to 30° is higher than that when the skew angle is equal to 45°, 
and it is verified also by Erturk and Durs
 
(a) 

(b) 

Fig. 7. Vorticity contours for Re (a) 200 and (b) 2000 and skew angle is 45°

(a) 

Fig. 8. Centerline velocity profiles for channel flow �, along A

Figure 8 shows that as the Re increases, the maximum value of the centerline �-velocity along A-B at the top of the skewed cavity decreases with more wiggles 
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ticity contours start to take the shape of the large vortex while the contours of the 
smaller secondary vortices did not seem to change in their shape as in the earlier 
case. Furthermore, their intensity and size increased with more generated smaller 
eddies, as indicated by the concentration of the vorticity contours, as Re soared. 

It is noteworthy to say that the number of the sharp corner eddies when the 
skew angle is equal to 30° is higher than that when the skew angle is equal to 45°, 
and it is verified also by Erturk and Dursun [17].  

. Vorticity contours for Re (a) 200 and (b) 2000 and skew angle is 45°

(b) 

 
. Centerline velocity profiles for channel flow over a skewed equilateral cavity (a) 

, along A-B and (b) �, along C-D and skew angle is 45° 

shows that as the Re increases, the maximum value of the centerline 
B at the top of the skewed cavity decreases with more wiggles 
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take the shape of the large vortex while the contours of the 
smaller secondary vortices did not seem to change in their shape as in the earlier 
case. Furthermore, their intensity and size increased with more generated smaller 

ncentration of the vorticity contours, as Re soared.  
It is noteworthy to say that the number of the sharp corner eddies when the 

skew angle is equal to 30° is higher than that when the skew angle is equal to 45°, 

 

 
. Vorticity contours for Re (a) 200 and (b) 2000 and skew angle is 45° 

over a skewed equilateral cavity (a) 

shows that as the Re increases, the maximum value of the centerline  
B at the top of the skewed cavity decreases with more wiggles 
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in the profile and the cause of the velocity reduction is the same as that when 
 = 30°. While the difference between peaks and bottoms in the profiles of the 
centerline �-velocity along C

Figure 9 shows the di
at the inlet as well as the exit boundaries of the channel at Re = 200 and 2000. Both 
of them are at a skew angle of 45
is parabolic and nearly th
 
(a) 

Fig. 9. Velocity profiles at the channel inlet and exit for Re (a) 200 and (b) 2000 

It can be seen from Table (�@D* values and their corresponding 
Erturk and Dursun [17]|�@�;| that decreased as indicated by Erturk and Dursun 

The |�@�;| as well as 
greater in the case of 
(present) skewed cavity and the cause of that surge is the same as that when 

The most important thing from the data tabulated in Table 
the present |�@�;|, �@D*
and 2000) are greater when the skew angle is 45° than those when the skew angle 
is 30° except in the case when the skew angle is 30° and for Re
value is greater than its value when the skew angle is 45°.

In the same way, the intensity ratio of the corner eddies is verified by compar
son with Erturk and Dursun 
ratio at Re = 200 & 

Re = 100 & 
 = 135° 
at low Re. Furthermore, the present ratio at 
than that of Erturk and Dursun 
the value of Moffatt [25]
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e profile and the cause of the velocity reduction is the same as that when 
30°. While the difference between peaks and bottoms in the profiles of the 

velocity along C-D increases.  
shows the difference between the velocity profiles of the channel flow 

at the inlet as well as the exit boundaries of the channel at Re = 200 and 2000. Both 
of them are at a skew angle of 45°. This demonstrates that the exit velocity profile 
is parabolic and nearly the same as the inlet velocity profile. 

(b) 

 
. Velocity profiles at the channel inlet and exit for Re (a) 200 and (b) 2000 

and skew angle is 45° 

It can be seen from Table (5) that, as the Re increases the |�@�;|
values and their corresponding |�A.B.| values also increase for present and 

[17] results except for the values of |�A.B.| corresponding 
that decreased as indicated by Erturk and Dursun [17].  

as well as �@D* values and their corresponding |�A.B.|
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[25] at 2� = 45° at low Re. 

e profile and the cause of the velocity reduction is the same as that when  
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Table 5. �@�;, �@D*, and �A.B. values and location of vortices’ centers at 45° 

Property 
Present at 
 = 45° Erturk and Dursun [17] at 
 = 135° 

Re = 200 Re = 2000 Re = 100 Re = 1000 

�@�; –0.0167 –0.0262 –0.083704 –0.093512 

�A.B. –1.0012 –1.3393 –4.06484 –2.99180 

� 3.7785 (0.0714) 3.8159 (0.1088) 0.1055 0.1390 

  0.4942 0.4268 0.4999 0.3922 

�@D* 1.0132E-05 5.8586E-04 1.0764E-04 3.7805E-03 

�A.B. 0.0065 0.1831 0.057419 1.19738 

� 4.4108 (0.7037) 4.2455 (0.5384) 0.6708 0.5554 

  0.1198 0.1757 0.1436 0.1478 

Table 6. Comparison of the ratios of intensities of successive sharp corner eddies at 45° 

The ratios of intensities of successive sharp corner eddies |�@�;|/�@D* and (ln (|�@�;|/�@D*)) 

Present at 
 = 45° Erturk and Dursun [17] at 
 = 135°  Moffatt [25] at 2� = 45° 

Re = 200 Re = 2000 Re = 100 Re = 1000 Low Re 

1648.24 (7.41) 44.72 (3.80) 777.63 (6.66) 24.74 (3.21) 518.01 (6.25) 

 
On the other hand, the data tabulated in Table 7 reveals the natural logarithm of 

the asymptotic length ratios of the corner eddies, and they are verified by compari- 
son with Moffatt [25]. We can see that our results agree very well with Moffatt [25] 
for both the Re at 200 and 2000 and the skew angle when 
 = 2� = 30° and 45°.  

Table 7. Comparison of the length ratios of successive sharp corner eddies at 30° and 45° 

The natural logarithm (ln) of the length ratios of successive sharp corner eddies  


 = 2� = 30° 
 = 2α = 45° 

Present Moffatt [25] Present Moffatt [25] 

Re = 200 Re = 2000 Low Re Re = 200 Re = 2000 Low Re 

0.75 0.73 0.75 1.18 1.10 1.15 

6. Conclusions 

It is noteworthy to say that, to our best knowledge, there is not a single investi-
gation of channel flow over a skewed equilateral cavity. In addition, it has high 
academic value for the study of vortices dynamics at corners which depends on  
the Re, the number, and the direction of moving walls, and the skewness angle.  
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Nonetheless, the introduced results of the present investigation are unique so,  
for future references, these outcomes offer a vital source for researchers to verify 
their outcomes. The following concluding remarks are based on the data described 
in the previous figures and tables that can be summarized as follows: 
 As Re increases, the main vortex approaches the center of the skewed cavity.  
 Likewise, the intensity, as well as the size of the smaller secondary vortices,  

increase. Also, at the lower sharp corner, there shows up continuously smaller 
counter-rotating recirculating eddies at high Re and most of them are generated 
at the fourth quad of the skewed cavity for both angles 30° and 45°. 

 Additionally, the higher the Re, the bigger the main vortex and it forms  
an approximately horizontal line and connecting the two tips of the skewed  
cavity for both skew angles 30° and 45°. 

 For a specific Re, as the skew angle decreases, the more counter-rotating  
vortices are generated at the sharp corner of the cavity. 

 Surprisingly, in the presented shear-driven skewed cavity problem at a high 
Reynold number, there is no tertiary vortex generated at the left inclined wall of 
the skewed equilateral cavity at both skew angles 30° and 45° as the case in the 
lid-driven skewed cavity benchmark problem. 

 The maximum value of the centerline �-velocity along A-B is not equal to one 
as the case in a lid-driven skewed cavity, because the moving lid is replaced 
with a moving shear layer of the flowing fluid.  

 It is observed that the maximum values of the centerline u-velocity profile along 
A-B at the top of the skewed cavity when 
 = 45° are greater than those when  
 = 30°. Similarly, the maximum, as well as the absolute of the minimum values 
of the centerline v-velocity profile along C-D in the middle of the skewed cavity 
when 
 = 45°, are greater than those when 
 = 30°. 

 The intensity and logarithm of the asymptotic length ratios of the corner eddies 
increase as the skew angle increases and they have been compared with Moffatt, 
and they were in a very good agreement.  

The extension of the present work is to study the effect of changing the aspect 
ratio of the skewed cavity, the flow of Non-Newtonian fluid, turbulent flow, and 
the heat transfer on fluid flow. Also, the effect of the entrance region and channel 
height can be examined at a later point.  
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