Identyfikatory
Warianty tytułu
Genesis and consequences of the application of the LNT hypothesis to radiological „protection”
Języki publikacji
Abstrakty
Hipoteza linowej, bezprogowej (linear, no-threshold, LNT) zależności między pochłonięciem niskiej dawki promieniowania jonizującego a ryzykiem rozwoju nowotworu od końca lat 50-tych XX wieku stanowi podstawę regulacji w ochronie radiologicznej, a także utrwala powszechną radiofobię w społeczeństwie. Niniejsza praca dokumentuje, że zarówno geneza, jak i proces „stabilizacji” hipotezy (modelu) LNT, które miały miejsce w latach 1920-1990 w USA, wynikają z ignorowania i manipulacji wynikami badań, osobistych interesów i nieetycznego postępowania wielu uznanych naukowców, gremiów i czasopism naukowych (np. Narodowej Akademii Nauk USA i magazynu Science), a także instytucji odpowiedzialnych za tworzenie i wdrażanie przepisów ochrony przed promieniowaniem. Przedstawione są również konsekwencje praktyczne, w tym sytuacje absurdalne wynikające ze stosowania hipotezy LNT w „ochronie” radiologicznej. Wszystko to prowadzi do postulatu, aby jak najszybciej zastąpić nienaukowy model szacowania ryzyka oparty o hipotezę LNT przez mające oparcie w wynikach badań modele progowy i/lub hormetyczny.
The hypothesis of the linear, no-threshold (LNT) relation between absorption of low doses of ionizing radiation and the risk of radiogenic cancer has since the late 1950s guided the rules of radiological protection and sustained radiophobia in the society. The present review documents that the birth and development of the LNT hypothesis have been associated with oversights, manipulations, and unethical conduct of a number of renowned scientists and scientific institutions and magazines which prompted regulations issued by agencies involved in or responsible for radiological protection. Also, described are the dire consequences and absurdities associated with the practical application of the LNT hypothesis to “protect” against any exposure to ionizing radiation. All this should urge us to immediately abandon the unreasonable LNT-based methodology of estimation of radiological health risks and replace it with the scientifically sound threshold or hormetic models.
Wydawca
Czasopismo
Rocznik
Tom
Strony
9--20
Opis fizyczny
Bibliogr. 94 poz., tab.
Twórcy
autor
- Państwowa Agencji Atomistyki
- Komitet Naukowy ONZ ds. Skutków Promieniowania Atomowego (UNSCEAR)
Bibliografia
- [1] Hasegawa A., Ohira T., Maeda M., Yasumura S., K., Tanigawa K., Emergency responses and health consequences after the Fukushima accident; evacuation and relocation. Clin. Oncol. 28:237-244, 2016.
- [2] Sutou S., A message to Fukushima: nothing to fear but fear itself. Genes Environ 38:12, 2016. doi: 10.1186/ s41021-016-0039-7.
- [3] Machado S.G., Land C.E., McKay F.W., Cancer mortality and radioactive fallout in Southwestern Utah. Am J Epidemiol, 125: 44-61, 1987. doi: 10.1093/oxfordjournals.aje.a114511.
- [4] Church B.W, Brooks A.L., Cost of fear and radiation protection actions: Washington County, Utah and Fukushima, Japan {Comparing case histories}. Int J Radiat Biol. 96:520- 531, 2020. doi: 10.1080/09553002.2020.1721595.
- [5] Siegel J.A., Pennington C.W., Sacks B., Welsh J.S., The birth of the illegitimate linear no-threshold model: an invalid paradigm for estimating risk following low-dose radiation exposure. Am J Clin Oncol. 41:173–177, 2018. doi: 10.1097/ COC.0000000000000244.
- [6] Inkret W.C., Meinhold C.B., Taschner J.C., A brief history of radiation protection standards. Los Alamos Science 23:116-123, 1995. Available at: http://www.fas.org/sgp/ othergov/doe/lanl/ 00326631.pdf.
- [7] NCRP 1954: National Committee for Radiation Protection. Permissible Dose from External Sources of Ionizing Radiation, Handbook 59, National Bureau of Standards Handbook, 1954, 59, pp. 17-19.
- [8] Muller H.J., Artificial transmutation of the gene. Science 66: 84-87, 1927.
- [9] Calabrese E.J., The linear No-Threshold (LNT) dose response model: A comprehensive assessment of its historical and scientific foundations. Chem Biol Interact. 301: 6-25, 2019. doi: 10.1016/ j.cbi.2018.11.020.
- [10] Calabrese E.J, Selby P.B., Giordano J., Ethical challenges of the linear non-threshold (LNT) cancer risk assessment revolution: History, insights, and lessons to be learned. Sci Total Environ. 832, 155054, 2022. doi: 10.1016/j. scitotenv.2022.155054.
- [11] Calabrese E.J., Cancer risk assessment, its wretched history and what it means for public health. J Occup Environ Hyg. 21(4): 220-238, 2024. doi: 10.1080/15459624.2024.2311300.
- [12] Olson A.R., Lewis G.N., Natural reactivity and the origin of species, Nature 121(3052): 673-674, 1928.
- [13] Muller H.J., Radiation and genetics. Am. Nat. 64, 220–251, 1930.
- [14] Ray-Chaudhuri S.P., The validity of the Bunsen-Roscoe law in the production of mutations by radiation of extremely low intensity. Proc. R. Soc. Edinb. B 62, 66-72, 1944.
- [15] Calabrese E.J., Ethical failings: The problematic history of cancer risk assessment. Environ Res. 193: 110582, 2021a. doi: 10.1016/j.envres.2020.110582.
- [16] Stadler L.J., Some genetic effects of x-rays in plants. J. Hered. 21: 3–19, 1930.
- [17] Caspari E., Stern C., The influence of chronic irradiation with gamma-rays at low dosages on the mutation rate in Drosophila melanogaster. Genetics 33(1): 75-95, 1948. doi: 10.1093/genetics/ 33.1.75.
- [18] Calabrese E.J., Muller’s Nobel lecture on dose–response for ionizing radiation: ideology or science? Arch Toxicol. 85(12):1495-1498, 2011. doi: 10.1007/s00204-011-0728-8.
- [19] Ogura K., Magae J., Kawakami Y., Koana T., Reduction in mutation frequency by very low-dose gamma irradiation of Drosophila melanogaster germ cells. Radiat Res. 171(1):1-8, 2009. doi: 10.1667/RR1288.1.
- [20] Koana T., Takahashi T., Tsujimura H., Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair. Radiat Res. 177(3): 265-271, 2012. doi: 10.1667/rr2630.1.
- [21] Calabrese E.J., The threshold vs LNT showdown: Dose rate findings exposed flaws in the LNT model part 1. The Russell-Muller debate. Environ Res. 154: 435-451, 2017. doi: 10.1016/j.envres.2016.12.006.
- [22] BEAR 1956: A Report to the Public. NAS/NRC, Washington, DC, 1956.
- [23] Calabrese E.J., Giordano J., Ethical issues in the US 1956 National Academy of Sciences BEAR I Genetics Panel report to the public. Health Phys. 123(5):387-391, 2022. doi: 10.1097/HP. 0000000000001608.
- [24] Neel, J.V., Letter to BEAR 1 Genetics Panelists. Neel File. American Philosophical Society, Philadelphia, PA, 1956.
- [25] Anonymous. Genetic effects of atomic radiation. Science 123 (3209):1157–1164, 1956.
- [26] Lewis E.B., Leukemia and ionizing radiation. Science 125: 965-972, 1957. doi: 10.1126/science.125. 3255.965.
- [27] Calabrese E.J., LNT and cancer risk assessment: its flawed foundations part 1: radiation and leukemia: where LNT began. Environ. Res. 197:111025, 2021b. doi: 10.1016/j. envres.2021.111025.
- [28] NCRPM 1959: Somatic radiation dose for the general population. Report of the Ad Hoc Committee of the National Committee on Radiation Protection and Measurements, 6 May 1959. Science 131: 482–486, 1960.
- [29] Russell W.L., Russell L.B., Kelly E.M., Radiation dose rate and mutation frequency. Science 128(3338): 1546–1550, 1958.
- [30] Calabrese E.J., Selby P.B., Background radiation and cancer risks: A major intellectual confrontation within the domain of radiation genetics with multiple converging biological disciplines. J Occup Environ Hyg. 20(12): 621-632, 2023. doi: 10.1080/15459624.2023.2252032.
- [31] ICRP 1959. Publication 1. Recommendations of the International Commission on Radiological Protection. Pergamon Press, New York, 1959.
- [32] ICRP 1991. Publication 60. 1990 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 21: 1-3, 1991.
- [33] BEIR I 1972. The Effects on Populations of Exposure to Low Levels of Ionizing Radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations, Division of Medical Sciences, National Academy of Sciences, National Research Council, Washington, D.C. 20006, November 1972.
- [34] BEIR VII Phase 2. Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council of the National Academies, The National Academies Press; Washington, D.C., 2006, str. 15.
- [35] GAO 2000. Radiation Standards: Scientific Basis Inconclusive, and EPA and NRC Disagreement Continues. Washington, D.C.: GAO; 2000. GAO/RCED-00-152.
- [36] USEPA 2006. Modifying EPA Radiation Risk Models Based on BEIR VII. Washington, D.C.: USEPA, 2006.
- [37] USEPA 2011. EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population. Washington, D.C.: USEPA, 2011.
- [38] NCRP 2018: Commentary No. 27: Implications of Recent Epidemiologic Studies for the Linear-Nonthreshold Model and Radiation Protection. The National Council on Radiation Protection and Measurements, Bethesda, MD, 2018.
- [39] Ulsh B.A., A critical evaluation of the NCRP COMMENTARY 27 endorsement of the linear no-threshold model of radiation effects. Environ Res. 167:472-487, 2018. doi: 10.1016/j.envres.2018.08.010.
- [40] Chaplin K., Estimating risk and NCRP’s Commentary 27. 40th 40th Annual CNS Conference (Virtual)/45th Annual CNS/CNA Student Conference (Virtual, June 6 – June 9, 2021.
- [41] Janiak M.K., Pocięgiel M., Welsh J.S., Time to rejuvenate ultra-low dose whole-body radiotherapy of cancer. Crit Rev Oncol Hematol. 160:103286, 2021. doi: 10.1016/j. critrevonc.2021.103286.
- [42] Janiak M.K., Czy małe dawki promieniowania jonizującego są szkodliwe? Post Tech Jądr. 65(2): 11-21, 2022.
- [43] Janiak M.K., Waligórski M.P.R., Can low-level ionizing radiation do us any harm? Dose Response. Special Collection: Low-dose scientific debate: data and scientific ethics - a special issue to commemorate Ludwik Dobrzynski, 2023, str. 1-15. doi: 10.1177/15593258221148013.
- [44] Ulsh B.A., Calabrese E.J., Time for Radiation Regulation to Evolve. Regulation, The Cato Institute’s magazine. Fall 2019.
- [45] Feinendegen L., Evidence for beneficial low level radiation effects and radiation hormesis. Br. J. Radiol. 78(925):3-7, 2005. doi: 10.1259/bjr/63353075.
- [46] ICRP 2007. Publication 103: the 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 37(2-4): 1-135, 2007.
- [47] Siegel J.A., Sacks B., Stabin M.G,. LNT 999. Health Physics News 23-24, 2015.
- [48] Siegel J.A., Sacks B., Welsh J.S., Time to Terminate LNT: Radiation Regulators Should Adopt LT. J Radiol Oncol. 1: 049-053, 2017. doi.org/10.29328/journal.jro.1001007.
- [49] Scott B.R., Some Epidemiologic studies of low doseradiation cancer risks are misinforming. Dose Response 19(2):15593258211024499, 2021. doi: 10.1177/15593258211024499.
- [50] Puskin J.S., Perspective on the use of LNT for radiation protection and risk assessment by the U.S. Environmental Protection Agency. Dose Response 7(4):284-291, 2009. doi: 10.2203/dose-response.09-005.Puskin.
- [51] Preston R.J., Boice J.D. Jr, Brill A.B., Chakraborty R., Conolly R., Hoffman F.O., Hornung R.W., Kocher D.C., Land C.E., Shore R.E., Woloschak G.E., Uncertainties in estimating health risks associated with exposure to ionising radiation. J Radiol Prot. 33(3): 573-588, 2013. doi: 10.1088/0952-4746/33/3/573.
- [52] Shore R.E., Beck H.L., Boice J.D. Jr, Caffrey E.A., Davis S., Grogan H.A., Mettler F.A. Jr, Preston R.J., Till J.E., Wakeford R., Walsh L., Dauer L.T., Recent epidemiologic studies and the linear no-threshold model for radiation protection-considerations regarding NCRP Commentary 27. Health Phys. 116: 235–246, 2019. doi.org/10.1097/HP.0000000000001015.
- [53] Rothman K.J., Greenland S., Modern Epidemiology. 2nd ed., Lippincot Williams & Wilkins, Philadelphia, PA, 1998.
- [54] Cardarelli II. J.J., Ulsh B.A., It is time to move beyond the linear no-threshold theory for low-dose radiation protection. Dose Response 16(3):1559325818779651, 2018. doi: 10.1177/1559325818779651.
- [55] Hansen H. Fallacies, The Stanford Encyclopedia of Philosophy. Stanford, C.A.: Stanford University; 2015.
- [56] Sacks B., Meyerson G., Siegel J.A., Epidemiology without biology: false paradigms, unfounded assumptions, and specious statistics in radiation science (with commentaries by Inge Schmitz-Feuerhake and Christopher Busby and a reply by the authors). Biol Theory 11:69–101, 2016. doi: 10.1007/s13752-016-0244-4.
- [57] Scott B.R., A critique of recent epidemiologic studies of cancer mortality among nuclear workers. Dose Response 16(2):1559325818778702, 2018. doi: 10.1177/1559325818778702.2018.
- [58] Hall E.J., Radiobiology for the Radiologist. Fifth edition. Lippincott Williams & Wilkins, Philadelphia, 2000.
- [59] Bennett B., Repacholi M., Carr Z., Health Effects of the Chernobyl Accident and Special Care Programmes. Report of the UN Chernobyl Forum Expert Group “Health”. WHO Press, World Health Organization, Geneva, 2006.
- [60] Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts and Recommendations to the Governments of Belarus, the Russian Federation and Ukraine. The Chernobyl Forum 2003-2005, 2nd revised edition, IAEA, Vienna, 2006. https://goo.gl/Jcyz8H.
- [61] Janiak M.K.: Terroryzm radiacyjny. w: Pokojowe i Terrorystyczne Zagrożenia Radiacyjne. M.K. Janiak, A. Cheda, E.M. Nowosielska (red.), Wojskowa Akademia Techniczna, Warszawa, 2012, str. 57-74. ISBN 83-89379-08-2.
- [62] ICRP 2004. Draft Report of Committee I/Taks Group. Low dose extrapolation of radiation related cancer risk. Dec. 10, 2004.
- [63] Strupczewski A., Zaufajmy energetyce jądrowej. Wyd. 2, uzupełnione, NCBJ, Warszawa, 2016, str.57.
- [64] Grant E.J., Furukawa K., Sakata R., Sugiyama H., Sadakane A., Takahashi I., Utada M., Shimizu Y., Ozasa K., Risk of death among children of atomic bomb survivors after 62 years of follow-up: a cohort study. Lancet Oncol. 16(13): 1316- 1323, 2015. doi: 10.1016/S1470-2045(15)00209-0.
- [65] Thompson R.E., Epidemiological evidence for possible radiation hormesis from radon exposure: a case-control study conducted in Worcester, MA. Dose Response, 9:59– 75, 2011. doi: 10.2203/dose-response.10-026.Thompson.
- [66] Ritchie H., What are the safest and cleanest sources of energy? 2020, published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/ safest-sources-of-energy.
- [67] Devanney J., Why Nuclear Power has been a Flop at Solving the Gordian Knot of Electricity Poverty and Global Warming. 3rd ed., The CTX Press, Stevenson, WA, 2024, str. 37.
- [68] Tubiana M., Aurengo A., Averbeck D., et al., Dose-Effect Relationship and Estimation of the Carcinogenic Effects of Low Doses of Ionizing Radiation. Académie Nationale de Médecine, Institut de France Académie de Science; Joint report no. 2, NucléoN, March 30, 2005.
- [69] UNSCEAR 2012. Report of the United Nations Sci Committee on the Effects of Atomic Radiation Report No. A/67/46, UNSCEAR, New York, 2012.
- [70] USEPA 2018. Environmental Protection Agency (EPA). Proposed rule. Strengthening transparency in regulatory science. Fed. Reg. 83(83):18768–18774, 2018.
- [71] Golden R., Bus J., Calabrese E., An examination of the linear nothreshold hypothesis of cancer risk assessment: Introduction to a series of reviews documenting the lack of biological plausibility of LNT. Chem Biol Interact. 301:2- 5, 2019. doi:10.1016/j.cbi.2019.01.038.
- [72] Scott B.R., Tharmalingam S., The LNT model for cancer induction is not supported by radiobiological data. Chem Biol Interact 301: 34–53, 2019. doi: 10.1016/j.cbi.2019.01.013.
- [74] Vaiserman A., Cuttler J.M, Socol Y., Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology 22(2): 145-164, 2021. doi: 10.1007/ s10522-020-09908-5.
- [75] Jaworowski Z., Hormesis: The beneficial effects of radiation. 21st Century 7:22-26, 1994.
- [76] Jaworowski Z., Observations on the Chernobyl disaster and LNT. Dose Response 8(2):148-171, 2010. doi: 10.2203/dose-response.09-029.Jaworowski.
- [77] Jaworowski Z., Radiation folly. w: Environment and Health. Myths and Realities, K. Okonski i J. Morris (wyd.), Int. Policy Press, 2003, str. 68-86.
- [78] Waligórski M.P.R., On the present paradigm of radiation protection - A track structure perspective. Nukleonika 42(4):889-894, 1997.
- [79] Higson D.J., The bell tolls for LNT. Health Phys. 87(5 Suppl): S47-50, 2004. doi: 10.1097/00004032-200411002-00004.
- [80] Hooker A.M., Bhat M., Day T.K., Lane J.M., Swinburne S.J., Morley A.A., Sykes P.J., The linear no-threshold model does not hold for low-dose ionizing radiation. Radiat Res. 162(4): 447-452, 2004. doi: 10.1667/rr3228.
- [81] Tubiana M., Aurengo A., Averbeck D., Masse R., The debate on the use of linear no threshold for assessing the effects of low doses. J Radiol Prot 26(3):317-324, 2006. doi: 10.1088/0952-4746/26/3/N01.
- [82] Tubiana M., Feinendegen L.E., Yang C., Kaminski J.M., The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251(1):13- 22, 2009. doi: 10.1148/radiol.2511080671.
- [83] Ulsh B.A., Checking the foundation: recent radiobiology and the linear no-threshold theory. Health Phys. 99(6):747-758, 2010.
- [84] Dobrzyński L., Janiak M.K., Strupczewski A., Waligórski M., O konieczności zmiany paradygmatu ochrony radiologicznej - komentarz SARI - Stowarzyszenia Uczonych dla Rzetelnej Informacji o Promieniowaniu. Scientists for Accurate Radiation Information, On the need to replace the present paradigm of radiation protection - comments by SARI (Scientists for Accurate Radiation Information). Post Tech Jądr. 60(3): 2-11, 2017.
- [85] Sacks B., Siegel J.A., Preserving the anti-scientific linear no -threshold myth: authority, agnosticism, transparency, and the standard of care. Dose Response 15(3):1-4, 2017. doi: 10.1177/1559325817717839.
- [86] Welsh J.S., Sacks B., Siegel J.A., Time to eliminate LNT: the NRC needs to adopt LT and eliminate ALARA. Nucl Med Biomed Imaging 2(1):1-5, 2017.
- [87] Doss M. Are we approaching the end of the linear no -threshold era? Nucl Med. 2018; 59:1786–1793, 2018. doi: 10.2967/jnumed.118.217182.
- [88] Hansen CL, Hingorani R. LNT RIP: It is time to bury the linear no threshold hypothesis.
- [89] J Nucl Cardiol. 26(4): 1358-1360, 2019. doi: 10.1007/ s12350-019-01646-7.
- [90] Kaminski C.Y., Dattoli M., Kaminski J.M., Replacing LNT: The integrated LNT-hormesis model. Dose Response 18(2):1559325820913788, 2020. doi: 10.1177/1559325820913788.
- [91] Sykes, P., Until there is a resolution of the pro-LNT/anti-LNT debate, we should head toward a more sensible graded approach for protection from low-dose ionizing radiation. Dose Response 18(2):1559325820921651, 2020. doi: 10.1177/1559325820921651.
- [92] Doss M., Facilitating the end of the linear no-threshold model era. J Nucl Med 00:1–2, 2024. doi: 10.2967/ jnumed.124.267868.
- [93] Kino K., Calculations of the radiation dose for the maximum hormesis effect. Radiation 4: 69–84, 2024. doi. org/10.3390/ radiation4010006.
- [94] Scott B.R., A revised system of radiological protection is needed. Health Phys. 126(6): 419–423, 2024. doi: 10.1097/HP.0000000000001791.
- [95] Scott B.R., Walker D.M., Tesfaigzi Y., Schöllnberger H., Walker H., Mechanistic basis for nonlinear dose-response relationships for low-dose radiation-induced stochastic effects. Nonlinearity Biol Toxicol Med. 1(1): 93-122, 2003. doi: 10.1080/15401420390844492.
Uwagi
Błędna numeracja w bibliografii. Brak poz. nr 73.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbe59dcd-be9e-4fa5-a9a1-e1428043e0bf