Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Gas-filled multi-pass cell (MPC) has been widely used in physics and optics studies. An important issue that cannot be ignored is the instability of beam propagation, which will destroy the optical elements and weaken the experimental performance. In this paper, the authors propose a theoretical investigation of MPC, not only the analytical solution of the eigenmode, but also the beam evolution in gas-filled MPC. Based on the symmetrical configuration of MPC, the model is established using the ABCD matrix method and the beam transmission evolution in MPC. The analytical eigenmode solution is derived by solving the functions of q-parameter transformation. The beam size and wavefront radius verify the correctness of the eigenmode. Then, the transfer matrix calculates the beam evolution of 100 passes in MPC. Compared to the traditional eigenmode calculation, the method proposed in this paper has higher stability. Starting from a theoretical perspective, this paper addresses the issue of an unstable beam transmission in MPC, which is significant for designing and evaluating MPC configuration in frontier scientific research.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e154201
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
- China Jiliang University, Hangzhou, China
- Division of Time and Frequency Metrology, National Institute of Metrology (NIM), Beijing, China
autor
- Division of Time and Frequency Metrology, National Institute of Metrology (NIM), Beijing, China
autor
- China Jiliang University, Hangzhou, China
autor
- China Jiliang University, Hangzhou, China
autor
- YIXI Intelligent Technology (YIXIST) Co., Ltd., Hangzhou, Zhejiang, China
autor
- China Jiliang University, Hangzhou, China
Bibliografia
- [1] Shcherbakova, A. V. et al. Experimental setup based on a quantum cascade laser tunable in the wavelength range of 5.3–12.8 μm for spectral analysis of human exhaled air. Opt. Spectrosc. 129, 830-837 (2021). https://doi.org/10.1134/S0030400X21060151.
- [2] Lucivero, V. G., Lee, W., Dural, N. & Romalis, M. V. Femtotesla direct magnetic gradiometer using a single multipass cell. Phys. Rev. Appl. 15, 014004 (2021). https://doi.org/10.1103/PhysRevApplied.15.014004.
- [3] Cai, B. et al. Herriott-cavity-assisted all-optical atomic vector magnetometer. Phys. Rev. A 101, 053436 (2020). https://doi.org/10.1103/PhysRevA.101.053436.
- [4] Wang, R. et al. Double-enhanced multipass cell-based wavelength modulation spectroscopy CH4 sensor for ecological applications. Opt. Express 31, 3237-3248 (2023). https://doi.org/10.1364/OE.480496.
- [5] Wang, L. et al. Enhanced photoacoustic spectroscopy integrated with a multi-pass cell for ppb level measurement of methane. Appl. Sci. 14, 6068 (2024). https://doi.org/10.3390/app14146068.
- [6] Hudzikowski, A., Głuszek, A., Krzempek, K. & Sotor, J. Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm. Opt. Express 29, 26127-26136 (2021). https://doi.org/10.1364/OE.432541.
- [7] Omar, A., Vogel, T., Hoffmann, M. & Saraceno, C. J. Spectral broadening of 2-mJ femtosecond pulses in a compact air-filled convex-concave multi-pass cell. Opt. Lett. 48, 1458-1461 (2023). https://doi.org/10.1364/OL.481774.
- [8] Graf, M., Emmenegger, L. & Tuzson, B. Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy. Opt. Lett. 43, 2434-2437 (2018). https://doi.org/10.1364/OL.43.002434.
- [9] Roberts, F. C., Lewandowski, H. J., Hobson, B. F. & Lehman, J. H. A rapid, spatially dispersive frequency comb spectrograph aimed at gas phase chemical reaction kinetics. Mol. Phys. 118, e1733116 (2020). https://doi.org/10.1080/00268976.2020.1733116.
- [10] Gao, B., Wu, T. & Zhou, Q. Optimization of air refractive index based on dispersive interferometry, Opt. Express 32, 27958-27973 (2024). https://doi.org/10.1364/OE.530417.
- [11] Cheng, G., Cao, Y.-N., Tian, X., Chen, J.-J. & Wang, J.-J. Design and analysis of novel folded optical multi-pass cell. Front. Phys. 10, 907715 (2022). https://doi.org/10.3389/fphy.2022.907715.
- [12] Mikkonen, T., Hieta, T., Genty, G. & Toivonen, J. Sensitive multi-species photoacoustic gas detection based on mid-infrared supercontinuum source and miniature multipass cell. Phys. Chem. Chem. Phys. 24, 19481-19487 (2022). https://doi.org/10.1039/D2CP01731H.
- [13] Daher, N. et al. Multipass cells: 1D numerical model and investigation of spatio-spectral couplings at high nonlinearity J. Opt. Soc. Am. B 37, 993-999 (2020). https://doi.org/10.1364/JOSAB.386049.
- [14] Cao, Y. et al. The design and simulation of a novel ring multi-pass optical cell for detection of environmental trace gas. Optik 227, 166095 (2021). https://doi.org/10.1016/j.ijleo.2020.166095.
- [15] Viotti, A.-L. et al. Multi-pass cells for post-compression of ultrashort laser pulses. Optica 9, 197-216 (2022). https://doi.org/10.1364/OPTICA.449225.
- [16] Yang, T. et al. A miniaturized multipass cell for measurement of O2 concentration in vials based on TDLAS. Opt. Lasers Eng. 163, 107454 (2023). https://doi.org/10.1016/j.optlaseng.2022.107454.
- [17] Fang, B. et al. Highly sensitive portable laser absorption spectroscopy formaldehyde sensor using compact spherical mirror multi-pass cell. Sens. Actuators B Chem. 394, 134379 (2023). https://doi.org/10.1016/j.snb.2023.134379.
- [18] Liu, S.-Q., Yu, Q.-Q., Zhou, H. & Sheng, D. Sensitive and stable atomic vector magnetometer to detect weak fields using two orthogonal multipass cavities. Phys. Rev. Appl. 19, 044062 (2023). https://doi.org/10.1103/PhysRevApplied.19.044062.
- [19] Yi, K. et al. Free-induction-decay 4He magnetometer using a multipass cell. Phys. Rev. Appl. 22, 014084 (2024). https://doi.org/10.1103/PhysRevApplied.22.014084.
- [20] Kaumanns, M., Kormin, D., Nubbemeyer, T., Pervak, V. & Karsch, S. Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs. Opt. Lett. 46, 929-932 (2021). https://doi.org/10.1364/OL.416734.
- [21] Kaur, J. et al. Simultaneous nonlinear spectral broadening and temporal contrast enhancement of ultrashort pulses in a multi-pass cell. J. Phys. Photonics 6, 015001 (2024). https://doi.org/10.1088/2515-7647/ad078a.
- [22] Segundo, V. W. et al. Numerical investigation of gas-filled multipass cells in the enhanced dispersion regime for clean spectral broadening and pulse compression. Opt. Express 31, 18898-18906 (2023). https://doi.org/10.1364/OE.481054.
- [23] Kong, R., Sun, T., Liu, P. & Zhou, X. Optical design and analysis of a two-spherical-mirror-based multipass cell. Appl. Opt. 59, 1545-1562 (2020). https://doi.org/10.1364/AO.381632.
- [24] Webster, C. R., Flesch, G. J., Briggs, R. M., Fradet, M. & Christensen, L. E. Herriott cell spot imaging increases the performance of tunable laser spectrometers. Appl. Opt. 60, 1958-1965 (2021). https://doi.org/10.1364/AO.417074.
- [25] Hanna, M., Daher, N., Guichard, F., Délen, X. & Georges, P. Hybrid pulse propagation model and quasi-phase-matched four-wave mixing in multipass cells. J. Opt. Soc. Am. B 37, 2982-2988 (2020). https://doi.org/10.1364/JOSAB.395789.
- [26] Zhang, B. et al. High-sensitivity photoacoustic gas detector by employing multi-pass cell and fiber-optic microphone. Opt. Express 28, 6618–6630 (2020). https://doi.org/10.1364/OE.382310.
- [27] Kogelnik, H. & Li, T. Laser beams and resonators. Appl. Opt. 5, 1550-1567 (1966). https://doi.org/10.1364/AO.5.001550.
- [28] Herriott, D., Kogelnik, H. & Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 3, 523-526 (1964). https://doi.org/10.1364/AO.3.000523.
- [29] Schuurmans, F. J. P., de Lang, D. T. N., Wegdam G. H., Sprik, R. & Lagendijk, A. Local-field effects on spontaneous emission in a dense supercritical gas. Phys. Rev. Lett. 80, 5077-5080 (1998). https://doi.org/10.1103/PhysRevLett.80.5077.
- [30] Martin-Sanchez, D. et al. ABCD transfer matrix model of Gaussian beam propagation in Fabry-Perot etalons. Opt. Express 30, 46404–46417 (2022). https://doi.org/10.1364/OE.477563.
- [31] Martin-Sanchez, D., Li, J., Zhang, E. Z., Beard, P. C. & Guggenheim, J. A. ABCD transfer matrix model of Gaussian beam propagation in plano-concave optical microresonators. Opt. Express 31, 16523-16534 (2023). https://doi.org/10.1364/OE.484212.
Uwagi
1. This work was supported by the National Key R&D Program of China (Grant No. 2021YFF0603800), National Natural Science Foundation of China (Grant No. 1230030120), the Natural Science Foundation of Zhejiang Province (Grant No. LQ24A040005, LQ24F050006), and the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. 2023YW54, 2023YW62).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbe42742-8b1e-4531-9790-728f7036c52a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.