PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytotoxicity of Sodium Chloride Towards Common Duckweed (Lemna Minor L.) and Yellow Lupin (Lupinus Luteus L.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Fitotoksyczne działanie chlorku sodu wobec łubinu żółtego (Lupinus Luteus L.) oraz rzęsy drobnej (Lemna Minor L.)
Języki publikacji
EN
Abstrakty
EN
Salinity has adverse effects on plants and is one of the causes of environment degradation. Plants have developed many defensive mechanisms, protecting them from sodium chloride (NaCl), including accumulation of osmoprotective compounds, which maintain osmotic balance, protect cell structure and enzymes. In the current study, we investigated the effects of salinity resulting from a range of sodium chloride concentrations (from 0 to 400 mM) on the growth of common duckweed (Lemna minor L.) and yellow lupin (Lupinus luteus L.). Increasing concentration of sodium chloride decreased the area of common duckweed leaves. At the highest applied salt concentration, the decrease of leaf area was associated with leaf chlorosis. In yellow lupin, the increasing sodium chloride concentration inhibited root and stem elongation. The highest tested NaCl concentration of 400 mM completely stopped elongation of yellow lupin shoots. The content of cyclitols and soluble carbohydrates in plant tissues was evaluated as well. Cyclitols (D -chiro -inositol and D -pinitol), as well as soluble carbohydrates (glucose, fructose and sucrose) were detected in common duckweed tissues. Yellow lupin seedlings also contained cyclitols - D -pinitol, myo -inositol and D -chiro -inositol - and soluble carbohydrates - glucose, galactose and sucrose. The content of osmoprotectants in plant tissues, especially sucrose and cyclitols, increased with increasing concentration of sodium chloride in the soil. The results indicate that the content of cyclitols and soluble carbohydrates in plant tissues can be an indicator of plant response to salinity stress.
PL
Zasolenie wpływa niekorzystnie na roślinność i stanowi jedną z przyczyn degradacji środowiska wodnego i glebowego. Rośliny wykształciły wiele mechanizmów odporności na NaCl, jednym z nich może być akumulacja związków osmoprotekcyjnych, utrzymujących równowagę osmotyczną, chroniących struktury komórkowe i enzymy. W pracy badano wpływ zasolenia wywołanego różnymi stężeniami chlorku sodu (od 0 do 400 mM) na tempo wzrostu rzęsy drobnej (Lemna minor L.) i łubinu żółtego (Lupinus luteus L.). Ponadto w tkankach roślin oceniano zawartość cyklitoli i węglowodanów rozpuszczalnych. Wzrastające stężenie chlorku sodu zmniejszało powierzchnię liści rzęsy drobnej. W najwyższym z zastosowanych stężeń obok redukcji pola powierzchni liści obserwowano również intensywną chlorozę liści. Wzrastające stężenie chlorku sodu hamowało wzrost elongacyjny korzeni i łodyg łubinu żółtego. Najwyższe z badanych stężeń NaCl całkowicie hamowało wzrost elongacyjny łodyg łubinu żółtego. W tkankach rzęsy drobnej występowały cyklitole (D -chiro -inozytol i D -pinitol) oraz węglowodany rozpuszczalne (glukoza, fruktoza i sacharoza). Natomiast w siewkach łubinu żółtego występowały cyklitole (D -pinitol, myo -inozytol i D -chiro -inozytol) oraz węglowodany rozpuszczalne (glukoza, fruktoza, galaktoza i sacharoza). Wykazano, że wraz ze wzrostem stężenia chlorku sodu w podłożu wzrastała zawartość osmoprotektantów (cyklitoli i sacharozy) w tkankach. Badania wykazały, że cyklitole i węglowodany rozpuszczalne obecne w tkankach łubinu żółtego i rzęsy drobnej są dobrymi biomarkerami środowiska zanieczyszczonego chlorkiem sodu.
Rocznik
Strony
117--128
Opis fizyczny
Bibliogr. 47 poz., wykr.
Twórcy
autor
  • Department of Environmental Toxicology, University of Warmia and Mazury in Olsztyn, Poland
  • Department of Plant Physiology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
autor
  • Department of Environmental Toxicology, University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • [1] Abbas, W., M., Ashraf, M., & Akram, N.A. (2010). Alleviation of salt -induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Scientia Horticulture, 125 (3), 188-195.
  • [2] Bagheri, A., & Sadeghipour, O. (2009). Effects of salt stress on yield, yield components and carbohydrates content in four hullless barley (Hordeum vulgare L.) cultivars, Journal of Biological Sciences, 9 (8), 909-912.
  • [3] Blaylock, A. (1994). Soil salinity, salt tolerance and growth potential of horticultural and landscapeplants. USA, Wyoming: Co -operative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of Agriculture, Laramie.
  • [4] Crowe, J.H., Hoekstra, F.A., Nguyen, K.H., & Crowe, L.M. (1996). Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochimica et Biophysica Acta - Biomembranes. 1280 (2), 187-196.
  • [5] Deguchi, M., Koshita, Y., Gao, M., Tao, R., Tetsumura, T., Yamaki, S., & Kanayama, Y. (2004). Engineered sorbitol accumulation induces dwarfism in japanese persimmon. Journal of Plant Physiology. 161 (10), 1177-1184.
  • [6] Dhanapackiam, S., & Muhammad Ilyas, M.H. (2010). Leaf area and ion contents of Sesbania grandiflora under NaCl and Na2SO4 salinity, Indian Journal of Science and Technology. 3 (5), 561-563.
  • [7] FAO. (2007). Extent and causes of salt -affected soils in participating countries. AGL: Global Network on Integrated Soil Management for Sustainable use of Saltaffected Soils. http://www.fao.org/ag/agl/agll/spush/topic2.htm.
  • [8] Galvan -Ampudia, C.S., & Testerink, C. (2011). Salt stress signals shape the plant root, Current Opinionin Plant Biology, 14 (3), 296-302.
  • [9] Goodman, A., Ganf, G., Dandy, G., Maier, H., & Gibbs, M. (2010). The response of freshwater plants to salinity pulses. Aquatic Botany, 93, 59-67.
  • [10] Hernández, J.A., & Almansa, M.S. (2002). Short -term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum, 115, 251-257.
  • [11] Hernández, J.A., Campillo, A., Jiménez, A., Alarcón, A.A., & Sévilla, F. (1999). Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytology, 141, 241-251.
  • [12] Higbie, S.M., Wang, F., McD. Stewart, J., Sterling, T.M., Lindemann, W.C., Hughs, E., & Zhang, J. (2010). Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. InternationalJournal of Agronomy, 1-12.
  • [13] Ibraheem, O., Dealtry, G., Roux, S., & Bradley, G. (2011). The effect of drought and salinity on the expressional levels of sucrose transporters in rice (oryza sativa nipponbare) cultivar plants. Journal ofPlant Biology & Omics, 4 (2), 68-74.
  • [14] Jamil, M., Lee, C.C., Rehman, S.U., Lee, D.B., Ashraf, M., & Rha, R.S. (2005). Salinity (NaCl) tolerance of brassica species at germination and early seedling growth. Electronic Journal of EnvironmentalAgricultural and Food Chemistry, 4 (4), 970-976.
  • [15] Lima -Costa, M.E., Ferreira, A.L., Duarte, A., & Belträo, J. (2002). Saline stress and cell toxicity evaluation using suspended plant cell cultures of horticultural crops grown in a bioreactor. Acta Horticulture, 573, 219-225.
  • [16] Lokhande, V.H., Nikam, T.D., & Penna, S. (2010). Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell, Tissue and OrganCulture. 102 (1), 17-25.
  • [17] Lu, S., Li, T., & Jiang, J. (2010). Effects of salinity on sucrose metabolism during tomato fruit development. African Journal of Biotechnology, 9 (6), 842-849.
  • [18] Lundmark, A., & Olofsson, O. (2007). Chloride deposition and distribution in soils along a deiced higway - assessment using different methods of measurement. Water Air Soil Pollutant, 182, 173-185.
  • [19] Lundmark, A. & Jansson, P. (2008). Estimating the fate of de -icing salt in a roadside environment by combining modelling and field observations. Water Air Soil Pollutant. 195, 215-232.
  • [20] Merchant, A., Tausz, M., Arndt, S.K., & Adams, M.A. (2006). Cyclitols and carbohydrates in leaves and roots of 13 eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Celland Environment, 29 (11), 2017-2029.
  • [21] Miller, T.S. (2004). Hydrogeology and simulation of ground -water flow in a glacial -aquifer system atCortland County, New York, U.S. Geological Survey Fact Sheet 054 -03, 6.
  • [22] Mohammadi, G.R. (2009). The influence of NaCl priming on seed germination and seedling growth of canola (Brassica napus L.) under salinity conditions. American -Eurasian Journal of Agricultural &Environmental Sciences, 5 (5), 696-700.
  • [23] Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Physiology, 59, 651-68.
  • [24] Nelson, D.E., Rammesmayer, G., & Bohnert, H.J. (1998). Regulation of cell -specific inositol metabolism and transport in plant salinity tolerance. Plant Cell, 10 (5), 753-764.
  • [25] Neumann, P.M. (1995). Inhibition of root growth by salinity stress: Toxicity or an adaptive biophysical response, In: Baluska, F., Ciamporova, Gasparikova, M. & Barlow, O. P.W. (Eds.) Structure and Functionof Roots. The Netherlands: Kluwer Academic Publishers, 299-304.
  • [26] OECD 221 (2006). Lemna sp. Growth Inhibition Test. Guideline for the testing of chemicals. OECD. Organisation for Economic Co -operation and Development, Paris,
  • [27] Panda, S.K., & Upadhyay, R.K. (2003). Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor. Biologia Plantarum, 48 (2), 249-253.
  • [28] Pardo, J. (2010). Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology, 21 (2), 185-196.
  • [29] Piotrowicz -Cieślak, A.I., Adomas, B., & Michalczyk, D.J. (2010). Different glyphosate phytotoxicity to seeds and seedlings of selected plant species. Polish Journal of Environmental Studies, 19 (1), 123-129.
  • [30] Piotrowicz -Cieślak, A.I., Adomas, B., Nałęcz -Jawecki, G., & Michalczyk, D.J. (2010). Phytotoxicity of sulfamethazine soil pollutant to six legume plant species. Journal of Toxicology & EnvironmentalHeath - Part A: Current Issues, 73 (17-18), 1220-1229.
  • [31] Piotrowicz -Cieślak, A.I. (2005). Changes in soluble corbohydrates in yellow lupin seed under prolonged storage. Seed Science and Technology, 33, 141-145.
  • [32] Rahman, M., Soomoro, U.A., Haq, M.Z., & Gul, S. (2008). Effects of NaCl salinity on wheat (Triticum aestivum L.) cultivars. World Journal of Agricultural Sciences, 4 (3), 398-403.
  • [33] Rahnamal, A., Munns, R., Poustini, K., & Watt, M. (2011). A screening method to identify genetic variation in root growth response to a salinity gradient, The Journal of Experimental Botany, 62 (1), 69-77.
  • [34] Rhodes, D., & Hanson, A.D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 357-384.
  • [35] Rontein, D., Basset, G., & Hanson A.D. (2002). Metabolic Engineering of Osmoprotectant Accumulation in Plants. Metabolic Engineering, 4, 49-56.
  • [36] Shannon, M.C., & Grieve, C.M. (1999). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78, 5-38.
  • [37] Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices, Nature. 418, 671-677.
  • [38] Turan, M.A., Elkarim, A.H.A., Taban, N., & Taban, S. (2010). Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. African Journal of Agricultural Research, 5 (7), 584-588.
  • [39] Werner, E., & di Pretoro, R. (2006). Rise and fall of road salt contamination of water -supply springs. Environmental Geology, 51, 537-543.
  • [40] Wolska, L., Sagajdakow, A., Kuczyńska, A., & Namieśnik, J. (2007). Application of ecotoxicological studies in integrated environmental monitoring: Possibilities and problems. Trends in AnalyticalChemistry, 26 (4), 332-344.
  • [41] Wood, M., & Stanway, A.P. (2001). Myo -inositol catabolism by rhizobium in soil: HPLC and enzymatic studies. Soil Biology and Biochemistry, 33 (3), 375-379.
  • [42] Yamagouchi, T., & Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science, 10 (12), 615-620.
  • [43] Yilmaz, D. (2007). Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae). Journal of Hazardous Materials, 147, 74-77.
  • [44] Yokoi, S., Bressan, R.A., & Hasegawa, P. M. (2002). Salt Stress Tolerance of Plants, JIRCAS WorkingReport, 25-33.
  • [45] Zgórska, A., Arendarczyk, A., & Grabińska -Sota, E. (2011). Toxicity assessment of hospital wastewater by the use of a biotest battery. Archives of Environmental Protection, 37 (3), 55-61.
  • [46] Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Science, 6 (2), 66-71.
  • [47] Zidan, I., Azaizeh, H., & Neumann, P.M. (1990). Dose salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiology, 93, 7-11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbe29803-5bd5-4bb3-9a03-7569f78789b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.