PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lubrication Behavior of the POE/R452A Mixtureat Different Sliding Velocities under Starved Lubrication Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości smarne mieszaniny POE/R452A przy różnych prędkościach ślizgania w warunkach skąpego smarowania
Języki publikacji
EN
Abstrakty
EN
There are no international standards guiding tribological testing in oil-refrigerant mixtures. The conditions for tribological tests, including sliding velocity, are chosen arbitrarily. The article presents an attempt to examine the influence of the sliding velocity of friction pair elements on the coefficient of friction and lubricating properties of compressor polyester oil (POE) and its mixture with the R452A refrigerant (POE/R452A) under starved lubrication conditions. The R452A refrigerant is currently widely used in transportation refrigeration. The authors’ original test procedure with the use of a model block-on-ring type friction pair was applied to evaluate the lubricating properties of the oil-refrigerant mixture. Tests were conducted in three operational situations: no lubrication, starved lubrication with POE oil, and starved lubrication with the POE/R452A mixture. In each case, the tests were performed at different sliding velocities and the same sliding distance. A series of tests was also conducted where the load was increased in steps by 20 N to determine the relationship between the coefficient of friction, sliding velocity, and load on the friction pair The results support the potential use of higher sliding velocities and the reduction in test duration. For starved lubrication with the POE oil and the POE/R452A mixture, the differences in wear at specific velocities for the same sliding distance reached up to 30%, and the rankings of lubricating properties at different velocities remained unchanged.
PL
Badania tribologiczne w mieszaninie olejczynnik chłodniczy nie są objęte żadnymi międzynarodowymi normami. Stosowane warunki testów tribologicznych, w tym prędkość ślizgania, są dobierane w sposób uznaniowy. W artykule przedstawiono próbę sprawdzenia wpływu prędkości ślizgania elementów węzła tarcia na wartość współczynnika tarcia i właściwości smarne sprężarkowego oleju poliestrowego (POE) i jego mieszaniny z czynnikiem chłodniczym R452A (POE/R452A) w warunkach skąpego smarowania. Czynnik chłodniczy R452A jest aktualnie szeroko wprowadzany do stosowania w chłodnictwie transportowym.Wykorzystano własną metodę oceny właściwości smarnych mieszaniny olej–czynnik chłodniczy z wykorzystaniem modelowego węzła tarcia typu rolka–klocek. Wykonano badania przy trzech sytuacjach eksploatacyjnych: bez smarowania, przy skąpym smarowaniu olejem POE i przy skąpym smarowaniu mieszaniną POE/R452A. W każdym przypadku wykonano testy przy różnych prędkościach ślizgania i takiej samej drodze tarcia. Wykonano również serię testów, w której skokowo zwiększano obciążenie ze skokiem 20 N celem określenia zależności współczynnika tarcia od prędkości ślizgania i obciążenia węzła tarcia.Wyniki badań potwierdzają możliwość wykorzystania większych prędkości ślizgania i skrócenia czasu przeprowadzania testów. Przy skąpym smarowaniu olejem POE i mieszaniną POE-R452A różnice dla poszczególnych stopni prędkości przy tej samej drodze tarcia wznosiły maksymalnie 30%, a rankingi właściwości smarnych dla różnych prędkości pozostają takie same.
Czasopismo
Rocznik
Tom
Strony
43--56
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr., wz.
Twórcy
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Machines and Motor Vehicles, Piotrowo 3 Street, 60-965 Poznań, Poland
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Machines and Motor Vehicles, Piotrowo 3 Street, 60-965 Poznań, Poland
Bibliografia
  • 1. Daniel G., Anderson M.J., Schmid W., Tokumitsu M.: Performance of Selected Synthetic Lubricants in Industrial Heat Pumps. Heat Recovery Systems, Vol. 2/4, 1982, pp. 359–368. DOI: 10.1016/0198-7593(82)90054-6.
  • 2. Seeton Ch.: Estimation of refrigerant-oil mixture viscosities for alternative refrigerants using solubility data. ASHRAE Winter Meeting, Chicago 2006.
  • 3. Leung M., Jotshi C.K., Goswami D.Y., Shah D.O., Gregory A.: Measurements of absorption rates of HFC single and blended refrigerants in POE oils. HVAC&R Research, vol. 2, 1998, pp. 141–151. DOI: 10.1080/10789669.1998.10391396.
  • 4. Jollev S.: New and Unique Lubricants for Use in Compressors Utilizing R-134a Refrigerant. International Refrigeration and Air Conditioning Conference, Purdue University, Indiana, USA, 1990,pp. 145–152.
  • 5. Chul Na B., Jin Chun K., Han D.C.: A tribological study of refrigeration oils under HFC-134a environment. Tribol. Int. 30 (9):707716, 1997. DOI: 10.1016/S0301-679X(97)00072-8.
  • 6. Ciantar C., Hadfield M., Smith A., Swallow A.: The influence of lubricant viscosity on the wear of hermetic compressor components in HFC-134a environments. Wear 236 (1), 1999, pp. 1–8, DOI: 10.1016/S0043-1648(99)00267-7.
  • 7. Garland N.P., Hadfield M.: Tribological analysis of hydrocarbon refrigerants applied to the hermetic compressor. Tribol. Int. 38, pp. 732–739, 2005. DOI: 10.1016/J.TRIBOINT.2004.10.009.
  • 8. Cannaday M.L., Polycarpou A.A.: Tribology of unfilled and filled polymeric surfaces in refrigerant environment for compressor applications. Tribol. Lett. 19, pp. 249–262. DOI: 10.1007/S11249-005-7441-9.
  • 9. Sheiretov T., Van Glabbeek W., Cusano C.: Simulative friction and wear study of retrofitted swash plate and rolling piston compressors, Int. J. Refrigeration, 1995, Vol. 18, No. 5, pp. 330–335, DOI: 10.1016/0140-7007(95)00017-6.
  • 10. Yoon H., Sheiretov T., Cusano C.: Tribological evaluation of various aluminum alloys in lubricant/refrigerant mixtures, International Compressor Engineering Conference, 1996. Paper 1096.
  • 11. Demas N.G., Polycarpou A.A.: Tribological investigation of cast iron air-conditioning compressor surfaces in CO2 refrigerant. Tribol. Lett. 22 (3), pp. 271–278, 2006. DOI: 10.1115/IJTC2006-12064.
  • 12. Yanagisawa T., Shimizu T., Fukuta M., 1991. Foaming characteristics of an oil–refrigerant mixture. Int. J. Refrigeration, 14 (3), pp. 132–136. DOI: 10.1016/0140-7007(91)90066-P.
  • 13. Li H., Hrnjak P.: Effect of Flow Regime in the Horizontal Inlet Header on Refrigerant-Oil Mixture Distribution in a MAC Microchannel Evaporator. SAE Technical Paper 2014-01-0701, 2014. DOI: 10.4271/2014-01-0701.
  • 14. Hong-Gyu J., Se-Doo O., Young-Ze Lee. Friction and wear of the lubricated vane and roller materials in a carbon dioxide refrigerant. Wear, 267/5–8, pp. 1252–1256, 2009. DOI: 10.1016/J.WEAR.2008.12.097.
  • 15. Górny K., Stachowiak A., Tyczewski P., Zwierzycki W.: Lubricity evaluation of oil-refrigerant mixtures with R134a and R290, Int. J. Refrigeration 69, 2016 pp. 261–271. DOI: 10.1016/J.IJREFRIG.2016.06.011.
  • 16. Hegar M., Kolda M.: System Drop-in Tests of Refrigerant DR-34 (R-452A) in a Trailer Refrigeration Unit Designed for R-404A. AHRI Low-GWP AREP Report NO. 41, 2015.
  • 17. Wang X., Amrane K.: AHRI Low Global Warming Potential Alternative Refrigerants Evaluation Program (Low-GWP AREP) – Summary of Phase II Testing. Results. In: Proc. of International Refrigeration and Air Conditioning Conference, 2016, Paper 2064, pp. 1–10.
  • 18. Emani M.S., Roy R., Mandal B.K., 2017. Development of refrigerants: a brief review. Indian J. Sci. Res. 14 (2), pp. 175–181.
  • 19. Harby K.: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renewable and Sustainable Energy Reviews Volume 73, 2017, pp. 1247–1264. DOI: 10.1016/J.RSER.2017.02.039.
  • 20. Karnaz J.: Evaluating Lubricants For Lower GWP Refrigerant Compressor Operations. In: Proc. of International Refrigeration and Air Conditioning Conference, 2017, Paper 1239, pp. 1–10.
  • 21. Polonara F., Kuijpers L.J.M., Peixoto R.A.: Potential impacts of the Montreal Protocol Kigali Amendment to the choice of refrigerant alternatives. International Journal of Heat and Technology, Vol. 35, 2017, Special Issue 1, pp. S1–S8. DOI: 10.18280/IJHT.35SP0101.
  • 22. Bhuttaa M.U., Khan Z.A., Garland N., Ghafoor A.: A Historical Review on the Tribological Performance of Refrigerants used in Compressors. Tribology in Industry, 2018. Vol. 40, No. 1, pp. 19–51. DOI: 10.24874/TI.2018.40.01.03.
  • 23. Birol Y., Birol F.: Sliding wear behaviour of thixoformed AlSiCuFe alloys. Wear 265, 2008, pp. 1902–1908. DOI: 10.1016/J.WEAR.2008.05.001.
  • 24. Akram, M.W., Polychronopoulou, K., Polycarpou, A.A.: Lubricity of environmentally friendly HFO1234yf refrigerant. Tribol. Int. 57, 2013, pp. 92–100. DOI: 10.1016/J.TRIBOINT.2012.07.013.
  • 25. Akram M.W., Polychronopoulou K., Polycarpou A.A.: Tribological performance comparing different refrigerant–lubricant systems: the case of environmentally friendly HFO-1234yf refrigerant. Tribol. Int. 78, 2014 pp. 176–186. DOI: 10.1016/J.TRIBOINT.2014.05.015.
  • 26. Tanaka M., Matsuura H., Taira S., Nakai A.: Selection of a refrigeration oil for R32 refrigerant and evaluation of the compressor reliability. In: Proc. of International Compressor Engineering Conference, 2014, Paper 2299, pp. 1–10.
  • 27. Sariibrahimoglu K., Kizil H., Aksit M., Efeoglu I., Kerpicci, H.: Effect of R600a on tribological behavior of sintered steel under starved lubrication. Tribol. Int. 43, 2010 pp. 1054–1058. DOI: 10.1016/J.TRIBOINT.2009.12.035.
  • 28. Akram MW, Polycarpou AA. Wear Mechanisms of Gray Cast Iron in the Presence of Environmentally Friendly Hydrofluoroolefin-Based Refrigerant and the Effect of Tribofilm Formation. J. Tribol, 2015, 137(4):041602. DOI: 10.1115/1.4030711.
  • 29. Young-Ze Lee, Se-Doo Oh: Friction and wear of the rotary compressor vane–roller surfaces for several sliding conditions. Wear 255, 2003, pp. 1168–1173. DOI: 10.1016/S0043-1648(03)00278-3.
  • 30. Mishra S.P.; Polycarpou A.A.: Tribological studies of unpolished laser surface textures under starved lubrication conditions for use in air-conditioning and refrigeration compressors. Tribol. Int., 2011, 44, pp. 1890–1901. DOI: 10.1016/J.TRIBOINT.2011.08.005.
  • 31. Deepak M. Shinde and Prasanta Sahoo: INFLUENCE OF SPEED AND SLIDING DISTANCE ON THE TRIBOLOGICAL PERFORMANCE OF SUBMICRON PARTICULATE REINFORCED Al12Si /1.5 WT% B4C COMPOSITE. International Journal of Metalcasting/Volume 16, Issue 2, 2022. DOI: 10.1007/s40962-021-00636-1.
  • 32. Ananth S., Sivaprakasam P., Udaya Prakash, Maheandera Prabu P., Varatharaju Perumal, Kalusuraman G.: Tribological Behavior and Surface Characterization of Gray Cast Iron-EN31 Steel under Lubricated Sliding Conditions. Journal of Nanomaterials Volume 2021, Article ID 7725959. DOI: 10.1155/2021/7725959.
  • 33. Llopis R., Calleja-Anta D., Sanchez D., Nebot-Andres L., Catalan-Gil J., Cabello R.: R-454C, R-459B, R-457A and R-455A as low-GWP replacements of R-404A: Experimental evaluation and optimization. International Journal of Refrigeration 106, 2019, pp. 133–43. DOI: 10.1016/J.IJREFRIG.2019.06.013.
  • 34. Li G.: Comprehensive investigation of transport refrigeration life cycle climateperformance, Sustain. Energy Technol. Assess., 2017, 21, pp. 33–49. DOI: 10.1016/J.SETA.2017.04.002.
  • 35. Atİlla G. Devecİoğlu & Vedat Oruç: Experimental comparison of R404A and R452A in refrigeration systems, Science and Technology for the Built Environment, 27, 1, 2021, pp. 61–69. DOI: 10.1080/23744731.2020.1796419.
  • 36. Matsumoto T., Kaneko M., Kawaguchi Y.: Evaluations of PVE Lubricants for Refrigeration and Air Conditioning system with the Low GWP Refrigerants. IOP Conf. Series: Materials Science and Engineering 232, 2017. DOI: 10.1088/1757-899X/232/1/012091.
  • 37. Karnaz J.: Evaluating Lubricants For Lower GWP Refrigerant Compressor Operations, International Compressor Engineering Conference, 2016, Paper 2434.
  • 38. Saleem A., Kim M-H.: Miscibility analysis of polyol-ester based oil SW32 with R404A and low-GWP refrigerant R452A. Int J Refrigeration, 2021, 129, pp. 22–31. DOI: 10.1016/J.IJREFRIG.2021.05.002.
  • 39. Devecioglu A.G., Oruç V.: Experimental comparison of R404A and R452A in refrigeration systems. Science and Technology for the Built Environment, 2021, 27, pp. 61–69. DOI: 10.1080/23744731.2020.1796419.
  • 40. Górny K., Stachowiak A., Tyczewski P., Zwierzycki W.: Lubricity of selected oils in mixtures with the refrigerants R452A, R404A, and R600a, Tribology International 134, 2019, pp. 50–59. DOI: 10.1016/J.TRIBOINT.2018.12.033.
  • 41. Górny K., Stachowiak A., Tyczewski P., Zwierzycki W.: Mixtures of Lubricants and Ecological Refrigerants under Starved Lubrication Conditions, Materials, 2022, Volume 15, Issue 21, 7747. DOI: 10.3390/ma15217747.
  • 42. Górny K., Stachowiak A., Tyczewski P., Zwierzycki W.: Lubricity evaluation of oil-refrigerant mixtures with R134a and R290, International Journal of Refrigeration 69, 2016, pp. 261–271. DOI: 10.1016/J.IJREFRIG.2016.06.011.
  • 43. Górny K., Stachowiak A., Tyczewski P., Zwierzycki W.: Research idea and methodology for determining test parameters for the lubricity evaluation of oil/refrigerant mixtures, Tribologia 3/2016, pp. 87–98. DOI: 10.5604/01.3001.0010.7295.
  • 44. Górny K., Tyczewski P., Zwierzycki W.: Description of the experimental method and procedure ofmodel wear test of refrigeration compressors’ parts, 2014, Solid State Phenomena, 225, 85. DOI: 10.4028/www.scientific.net/SSP.225.85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbdfbcfe-1540-47a8-adff-d5769dd7c621
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.