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Abstract
The paper concerns statistical description of turbulence in terms of multipoint velocity moments.
A literature survey on possible multipoint turbulence closures and their future perspective is
provided. We first consider the transport equations for two-point velocity statistics and their
one-point limit. Another form of turbulence description, in terms of multipoint probability
density functions is also introduced.
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1 Introduction

Although the evolution of turbulent velocity field is governed by the determin-
istic Navier-Stokes equations, due to its sensitivity to small variations in the
initial and boundary conditions the turbulent field may be treated as a stochas-
tic field [15]. Such a field is statistically fully described if, at a given time, all
multipoint velocity correlations of arbitrary order are known. Such information
can formally be provided by a suitable, infinite hierarchy of equations, namely,
the Lundgren-Monin-Novikov (LMN) equations [9] for the multipoint probability
density functions (PDF’s) or the Friedmann-Keller (FK) hierarchy [5], for the
multipoint velocity correlations. The n-point velocity correlation is an ensemble
average (average over infinitely many realisations) of the product of velocities in

∗E-mail address: marta.waclawczyk@igf.fuw.edu.pl

ISSN 0079-3205 Trans. Inst. Fluid-Flow Mach. 135(2017) 29–40



30 M. Wacławczyk

n different points 〈Ui(1)(x(1), t) · · · · ·Ui(n)
(xn, t)〉. In the n-th equation of the FK

hierarchy the unknown correlation of n+1-order is present. Similarly, the first n
equations of the LMN hierarchy are unclosed due to the presence of an unknown
n+1-point probability density function.

The n-point velocity PDF fn = fn(v(1),x(1); . . . ;v(n),x(n), t) contains in-
formation about all statistics up to n-point statistics of infinite order which
can be calculated from the PDF by integration over the sample space variables
v(1), . . . ,v(n), for example

〈Ui(1)(x(1), t) · · · · · Ui(n)
(xn, t)〉 =

∫

vi(1) . . . vi(n)
fndv(1) . . . dv(n) , (1)

where the integration is performed over the entire sample space, from −∞ to ∞
for each vi(k) , k = 1, . . . , n. It should be noted that the FK equations can formally
be derived from the LMN hierarchy by a proper multiplication and integration
over sample space variables.

Given these multi-point methods of turbulence description, one should notice
that, statistical turbulence closures like, e.g. k-ε or the Reynolds-stress models
(RSM) [15] provide only very limited information on a turbulent stochastic field.
The Reynolds-stresses are one-point second-order moments of turbulent velocity,
hence, the effect of all higher-order correlations have to be replaced by a proper
closure in the RSM models.

Another class of models is based on the one-point PDF [15], which provides
information on one-point statistics of arbitrary order, e.g.,

〈Ui(x, t)Uj(x, t)Uk(x, t)〉 =
∫∫∫

vivjvkf(v,x, t)dv .

Such closures can be used to model the velocity statistics, see e.g. [2, 10], or the
joint velocity-scalar statistics [4].

The one-point statistical models are already well-established and are broadly
used in engineering computations. Hence, they will not be discussed in detail here.
It has been a common belief that with the increase of available computational
powers the statistical Reynolds-averaged models will be replaced by the large-
eddy simulations (LES). This latter modeling approach, however, in spite of over
30 years of intensive development, is still deficient in predicting, e.g., the near-wall
flows.

Hence, an interesting option for the future study would be to return to the
statistical description of turbulence in terms of two-point and/or higher-order
correlations. The multipoint closures could also be used as a subgrid models in
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LES. The clear advantage of transport equations for two-point velocity moments
over the one-point approach is the only one unclosed triple correlation term. The
disadvantage is the larger number of independent variables (3 + 3 space variables
and time). For this reason the two-point modeling approaches has been put aside,
apart from models for homogeneous or weakly inhomogeneous flows. However, the
increase of computational powers might be a good reason to reconsider certain
alternatives.

In the present work, statistical description of turbulence in terms of multipoint
velocity moments and multipoint PDF’s is first discussed in Sec. 2. Next, two-
point closures for velocity, put forward in the extant literature are presented in
Sec. 3 and a perspective for a possible multipoint PDF closure is given in Sec. 4.
This is followed by conclusions and perspectives for further study.

2 Governing equations

In the present work a turbulent flow of Newtonian, incompressible and isothermal
fluid will be considered. With the use of the averaging operator, the instantaneous
velocity and pressure is decomposed into the mean and fluctuating parts: Ui =
〈Ui〉+ ui, P = 〈P 〉+ p. After the ensemble averaging of the governing equations
we obtain the mean continuity and the Reynolds equation

∂〈Ui〉
∂xi

= 0 ,
∂〈Ui〉
∂t

+ 〈Uj〉
∂〈Ui〉
∂xj

+
∂〈uiuj〉
∂xj

= −1

̺

∂〈P 〉
∂xi

+ ν
∂2〈Ui〉
∂xj∂xj

. (2)

2.1 Equations for two-point correlation tensor

Before equations for two-point correlation tensor will be written, it is necessary
to introduce the following notations, see also [11]. We will consider two points x
and x(1) and the distance vector r such that

r = x(1) − x . (3)

The two point correlation tensor will be denoted as

Rij(x, r, t) = 〈ui(x, t)uj(x(1), t)〉 . (4)

For further purposes the following notations for the two-point triple correlation
and two-point velocity-pressure correlations are introduced

R(ik)j(x, r, t) = 〈ui(x, t)uk(x, t)uj(x(1), t)〉 ,
Ri(jk)(x, r, t) = 〈ui(x, t)uj(x(1), t)uk(x(1), t)〉 , (5)

〈pui〉(x, r, t) = 〈p(x, t)uj(x(1), t)〉 , 〈uip〉(x, r, t) = 〈ui(x, t)p(x(1), t)〉 .
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In order to derive equations for two-point correlation tensor, first, an equation
for the evolution of the fluctuating velocity ui(x, t) at point x should be derived
by subtracting the Reynolds equation (2) from the momentum equation. Next,
this equation should be multiplied by uj(x(1), t). Similarly, transport equation
for fluctuating velocity at point x(1), uj(x(1), t) should be multiplied by ui(x, t).
After adding both equations and changing the system of coordinates from (x, x(1))
to (x, r) the transport equation for two-point correlation tensor is derived [11]

∂Rij

∂t
+ 〈Uk〉

∂Rij

∂xk
=

−Rkj
∂〈Ui(x, t)〉

∂xk
−Rik

∂〈Uj(x+ r, t)〉
∂xk

︸ ︷︷ ︸

Pij

−[〈Uk(x+ r, t)〉 − 〈Uk(x, t)〉]
∂Rij

∂rk
︸ ︷︷ ︸

Vij

−1

̺

[
∂〈puj〉
∂xi

− ∂〈puj〉
∂ri

+
∂〈uip〉
∂rj

]

︸ ︷︷ ︸

φij

+ν

[
∂2Rij

∂xk∂xk
− 2

∂2Rij

∂xk∂rk
+ 2

∂2Rij

∂rk∂rk

]

︸ ︷︷ ︸

Eν
ij

(6)

−
∂R(ik)j

∂xk
+

∂

∂rk

[
R(ik)j −Ri(jk)

]

︸ ︷︷ ︸

Tij

.

The above equation is complemented by the relations which follow from the con-
tinuity equation

∂Rij

∂xi
− ∂Rij

∂ri
= 0 ,

∂Rij

∂rj
= 0 ,

∂R(ik)j

∂rj
= 0 ,

∂〈pui〉
∂ri

= 0 . (7)

After calculating the divergence of Eq. (6), the Poisson equation for the two-point
velocity-pressure correlations 〈puj〉 is obtained. Hence, an interesting observation
is, that the only unclosed term in Eq. (6) is the triple correlation term Tij.

In the limit |r| → 0 from the two-point correlation tensor Rij the Reynolds
stresses 〈uiuj〉 are obtained

lim
|r|→0

Rij(x, r, t) = 〈ui(x, t)uj(x, t)〉 (8)

and Eq. (6) becomes a transport equation for the Reynolds stresses (RS) in this
limit. We obtain, respectively, the production term from Pij

lim
|r|→0

Pij = −
[

〈ukuj〉
∂〈Ui(x, t)〉

∂xk
+ 〈uiuk〉

∂〈Uj(x, t)〉
∂xk

]

, (9)
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the pressure-strain and velocity-pressure correlation from φij

lim
|r|→0

φij =
1

ρ

〈

p

(
∂uj
∂xi

+
∂ui
∂xj

)〉

− 1

ρ

∂

∂xk
〈puiδjk + pujδik〉 , (10)

dissipation and viscous diffusion from Eν
ij

lim
|r|→0

Eν
ij = ν

∂2〈uiuj〉
∂xk∂xk

− 2ν

〈
∂ui
∂xk

∂uj
∂xk

〉

, (11)

and turbulent diffusion from Tij

lim
|r|→0

Tij = −∂〈uiujuk〉
∂xk

. (12)

The term Vij in Eq. (6) tends to 0 when |r| → 0. Four terms, i.e., the pressure-
strain, velocity-pressure correlation, dissipation and the turbulent diffusion are
unclosed in the RS transport equations and are replaced by proper closures in the
standard one-point turbulence modelling. The examples are the well-established
Launder-Reece-Rodi [8] or Speziale-Sarkar-Gatski [19] models for the pressure-
strain correlation. The local isotropy assupmtion is taken as a model for the
dissipation term ǫij = 2

3ǫδij and a separate equation for ǫ or the turbulence fre-
quency ω = ǫ/k, where k is the turbulent kinetic energy is solved [21]. The
gradient diffusion models are used as a closure for the turbulent diffusion and
velocity-pressure correlation terms [15]. The one-point turbulence closure intro-
duces numerous assumptions and modeling constants. Here, the advantage of the
two-point equation (6) where only the triple correlation term Tij is unclosed is
clearly seen. Two-point modeling proposals for Eq. (6) are briefly described in
Sec. 3.

2.2 Multipoint PDF equations

An alternative multipoint description of turbulence can be obtained with the use
of multipoint probability density functions. The one-point PDF is related to the
probability f(v;x, t)dv that the velocity U(x, t) at point x and time t is contained
within v ≤ U(x, t) ≤ v+dv. Similarly, f(v(1),x(1);v(2),x(2), t)dv(1)dv(2) denotes
the joint probability that v(1) ≤ U (x(1), t) ≤ v(1) +dv(1) and v(2) ≤ U(x(2), t) ≤
v(2) + dv(2).
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The infinite hierarchy of equations for the multipoint PDF’s was derived in [9]
in the following form:

∂fn
∂t

+
n∑

k=1

vi(k)
∂fn
∂xi(k)

= − 1

4π

n∑

k=1

∂

∂vi(k)
(13)

×
∫ ∫

(

∂

∂xi(k)

1
∣
∣x(k) − x(n+1)

∣
∣

)(

vj(n+1)

∂

∂xj(n+1)

)2

fn+1dv(n+1)dx(n+1)

−
n∑

k=1

∂

∂vi(k)

[

lim
|x(n+1)−x(k)|→0

ν
∂2

∂xj(n+1)
∂xj(n+1)

∫

vi(n+1)
fn+1dv(n+1)

]

.

In the above equation the pressure was eliminated and instead, a free-space solu-
tion of the Poisson equation was used.

The n+1-point PDF of velocity can be also related to the PDF of velocity
increments ∆u(x(i), r(j), t) = u(x(i) + r(j), t) − u(x(i), t). The sample space of
∆u(x(i), r(j), t) will be denoted by ξ(j) and the n+1-point PDF of velocity equals

f(v(1),x(1); . . . ;v(n+1),x(n+1), t) = f(ξ(n), r(n); . . . ; ξ(1), r(1);u(1),x(1), t) .

Interestingly, recent studies [17, 18] show that within a certain range of scales
|r|, ∆u(x, r, t) can be treated as a Markov stochastic process in scale |r|. This
implies that the multipoint statistics of the system could be expressed by a product
of three-point statistics and that the system of equations for PDF’s (13) could
be truncated. This observation could be of particular importance for modeling
approaches and will be discussed in more detail in Sec. 4.

3 Possible closures for two-point correlations

There exists a class of models for the two-point correlations which are based on the
Fourier transform of the transport equation (6). Most of them, however, refer to
the homogenoeous or homogeneous and isotropic turbulence. In the homogeneous
and isotropic turbulence the two-point correlation tensor is a function of |r| = r
and t: Rij(r, t). The Fourier transform of the two-point correlation tensor will be
denoted by Φij(k, t), where k is the wavenumber vector. The turbulent kinetic
energy spectrum is defined as

E(k, t) =

∫
1

2
ΦiidS(k) , (14)
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where the integration is performed over a sphere S(k) in the wavenumber space,
centered at the origin, with radius k. If E(k, t) is integrated over k from 0 to ∞,
the kinetic turbulent energy is obtained. From the Fourier transformed Eqs. (6)
written for homogeneous, isotropic turbulence, a transport equation for E(k, t)
can be derived

∂E(k, t)

∂t
= −2νk2E(k, t) + T (k, t) . (15)

The term T (k, t) is the unclosed nonlinear transfer term. Several closures for
T (k, t) were proposed in the literature, e.g., the eddy damped quasi-normal Marko-
vian (EDQNM) model [14] or the test field model [6].

The two-point models for homogeneous turbulence can correctly reproduce the
cascade of energy from larger to smaller scales. Hence, the two-point models are
also used as a closure for subgrid terms in the large eddy simulations (see e.g., [1])
where the subgrid viscosity is expressed as a function of the energy spectrum at
the filter cut-off wavenumber.

The use of two-point models in inhomogeneous flow cases was so far limited
to relatively simple flows cases. Some authors follow the spectral formulation and
aim to extend the EDQNM model towards inhomogeneous turbulence, introducing
certain simplifications. In [16] the spectral tensor integrated over the sphere S(k)
is considered:

φij(k,x, t) =

∫

Φij(k,x, t)dS(k) . (16)

With this assumption, the pressure-velocity correlation becomes unclosed as in the
classical one-point models. Other authors use the weak homogeneity assumption
where only the leading terms in an expansion of the triple correlation tensor about
homogeneity are retained [7].

In contrast to these latter approaches in [11] Eq. (6) in physical space are
considered. To satisfy the continuity equations (7) the following form of the two-
point correlation tensor was derived

Rij = eikmejln

[
∂

∂xk
− ∂

∂rk

]
∂Vmn

∂xl
, (17)

where Vmn is the tensor potential and eijk is the alternating tensor. The product
eijkelmn equals

eijkelmn =

∣
∣
∣
∣
∣
∣

δil δim δin
δjl δjm δjn
δkl δkm δkn

∣
∣
∣
∣
∣
∣

.

ISSN 0079-3205 Trans. Inst. Fluid-Flow Mach. 135(2017) 29–40



36 M. Wacławczyk

In the homogeneous and isotropic turbulence the tensor potential Vmn has the
following form:

Vmn = −1

2
〈u21〉δmn

∫ r

0
f(r)rdr , (18)

where f(r) is the longitudinal velocity autocorrelation function [15], with r = e1r,
f(r)〈u21〉 = 〈u1(x, t)u1(x + e1r, t)〉. Equation (17) with (18) introduced into (6)
leads finally to the Kármán-Howarth equation for homogeneous and isotropic
turbulence.

In order to extend the model towards inhomogeneous flows it was postulated
in [11] to present the tensor Vmn as a function of a vector r and a new symmetric
tensor ∫ r

0
Fmn(x, r, t)rdr .

It was assumed that Vmn is linear in
∫ r
0 Fmnrdr and has a dimension of r2Fmn.

Then, with the use of the tensor invariant theory, a most general form of the
tensor Vmn satisfying these assumptions was derived.

The assumption that Fij is a function of the magnitude of the correlation
distance |r| = r instead of r introduced, of course, limitations to the proposed
closure. Especially close to solid boundaries, where the flow is strongly inhomo-
geneous, the model did not reproduce the statistics correctly. Still, an interesting
outcome from the analysis was the equation for nonisotropic length scale Lij, or,
alternatively, non-isotropic dissipation ǫij . In homogeneous, isotropic turbulence
the longitudinal integral lengthscale is defined as

L11(t) =

∫ ∞

0
f(r)dr .

In [11] an anisotropic lengthscale tensor was considered

Lij =
1

4π

∫

V
Fij

1

r2
d3r .

Next, transport equation for Lij was derived after integrating the two-point cor-
relation equation (6) taking into account the modelling assumptions. Following
the relation for the isotropic turbulent length scale l ∼ ǫ/k2/3, it was assumed
in [11] that the nonisotropic tensor Lij is a function of the Reynolds-stress and
the dissipation tensor ǫij . This led finally to the transport equations for ǫij, which
provide an interesting alternative to the equation for isotropic dissipation rate ǫ
with ǫij = 2/3δijǫ commonly used in turbulence models.
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Further works on velocity multipoint correlations [12, 13] show that the FK
equations are invariant under additional symmetries which has to be included in
order to represent correctly the velocity statistics in inhomogeneous flow cases.
Constructing new closures for inhomogeneous flows, based on the extended set of
symmetries is a perspective for a further study.

4 Perspectives for a possible closure of multipoint

PDF’s

A new insight into the multipoint closure was given in a series of works on multi-
point PDF’s [3, 17, 18]. In Ref. [3] the authors considered homogeneous isotropic
turbulence and described the turbulent cascade in terms of the longitudinal veloc-
ity increments ∆u1(x, r, t) = u1(x+ e1r/2, t) − u1(x− e1r/2, t). The multiscale
PDF is denoted as f(ξ(n), r(n); . . . ; ξ(1), r(1), t) where ξ(i) is the sample space vari-
able of the velocity difference ∆u1(x, r(i), t) and r(i+1) < r(i). It was shown exper-
imentally that in a certain range of r the stochastic cascade process is Markovian,
hence its conditional n-point PDF can be expressed as

f(ξ(n), r(n)|ξ(n−1), r(n−1); . . . ; ξ(1), r(1), t) = f(ξ(n), r(n)|ξ(n−1), r(n−1), t) . (19)

That means that given ∆u1(x, r(n−1), t) = ξ(n−1), knowledge of velocity differ-
ences at larger separations r provide no additional information on the velocity
increment ∆u1(x, r(n), t) = ξ(n). The authors considered the exact relations for
two- and three-point PDF’s

f(ξ(2), r(2)|ξ(1), r(1), t) =
f(ξ(2), r(2); ξ(1), r(1), t)

f(ξ(1), r(1), t)
,

f(ξ(3), r(3)|ξ(2), r(2); ξ(1), r(1), t) =
f(ξ(3), r(3); ξ(2), r(2); ξ(1), r(1), t)

f(ξ(2), r(2); ξ(1), r(1), t)
(20)

and investigated experimental data to show that the relation

f(ξ(3), r(3); ξ(2), r(2); ξ(1), r(1), t) = f(ξ(3), r(3)|ξ(2), r(2), t)f(ξ(2), r(2); ξ(1), r(1), t)

is satisfied with a good accuracy provided that r(1) − r(2) > λ, where λ is the
Taylor microscale.

With the Markov property the n-point PDF can be written as a product of
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conditional probabilities

f(ξ(n), r(n); . . . ; ξ(1), r(1), t) = (21)

f(ξ(n), r(n)|ξ(n−1), r(n−1), t)f(ξ(n−1), r(n−1)|ξ(n−2), r(n−2), t)

. . . f(ξ(2), r(2)|ξ(1), r(1), t)f(ξ(1), r(1), t) ,

which, once again, is true only if r(i) − r(i+1) > λ. For such a case the n-point
information are described by two-scale PDF’s, and moreover, the evolution of the
conditional PDF in scale r can be described by the Fokker-Planck equation [18]

− r
∂

∂r
f(ξ, r|ξ′, r′, t) =

− ∂

∂ξ

[

D(1)(ξ, r)f(ξ, r|ξ′, r′, t)
]

+
∂2

∂ξ2

[

D(2)(ξ, r)f(ξ, r|ξ′, r′, t)
]

, (22)

where r > r′ which implies the direction of the cascade process from large to small
scales.

In [17] a more complete description of the cascade process was performed
and the PDF of the from f(ξ(n), r(n); . . . , ξ(1), r(1);u(1),x(1)) = f(v(1),x(1); . . . ;
v(n+1),x(n+1), t) was considered which allowed to calculate multipoint statistics
of velocity from the PDF (not only the statistics of velocity increments). Inho-
mogeneous flow cases were also investigated in [17].

The analysis of DNS and experimental data performed in [3, 17, 18] may de-
liver new ideas on a possible multipoint closure. It also follows from this analysis
that for a certain range of |r|, the multipoint hierarchy (13) can be truncated.
Lastly, the connections between the described experimental data on PDF’s and
recent mathematical study on the symmetries of the LMN equations can be in-
vestigated [20].

5 Conclusions

Although classical statistical turbulence closures are usually restricted to one-
point moments of velocity, we could ask a question about other possibilities and
approaches which reach beyond the one-point description. In the present work
a literature survey on multipoint closures of turbulence was performed. As it
was discussed, considering the two-point and higher order statistics may deliver
new interesting insight into the phenomenon of turbulence. It is possible that
with the constant increase of computational powers, the multipoint closure will
become accessible in engineering applications, also as a possible closure for subgrid

ISSN 0079-3205 Trans. Inst. Fluid-Flow Mach. 135(2017) 29–40



Beyond one-point turbulence closures 39

terms in LES. So far, the large number of independent variables (7 for the two-
point statistics) made this approach computationally too expensive. Moreover,
the development of multipoint closures for strongly inhomogeneous flows is still
an open issue.

Recent experimental studies on multipoint PDF’s which show that the turbu-
lence cascade can be described as a Markov process in scale are also an interesting
perspective for further investigation. The Markov property was also found for the
inhomogeneous flow cases like, e.g., the free jet or cylinder wake. The studies sug-
gest that for a certain range of scales the infinite system of transport equations for
multipoint PDF’s may be truncated and a model for three-scale (or four-point)
statistics can be introduced.
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