PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dissolution of gold with cyanide replacingreagents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cyanide is used in the leaching phase of hydrometallurgical recovery of gold. The toxicity and environmental risks have created a need for safer alternatives. There is a vast amount of information about gold extraction and a selection has been collected and formalized to be used in a decision support tool. The tool Auric Advisor uses case-based reasoning (CBR) to provide process alternatives for the user queries. The aim of this paper is to study leaching of gold with cyanide replacing alternatives such as ammonium thiosulfate, chloride-hypochlorite, thiourea and thiocyanate to provide new cases for the tool. The behaviour of gold was examined with electrochemical tests and weight loss measurements a using quartz crystal microbalance (QCM) were used to determine the dissolution rate. Based on literature, the dissolution rate determined for cyanide solution was 2.5 mgcm-2h-1. Based on polarisation experiments and potential measurements, the ammonium thiosulfate system with cupric ion as oxidant was estimated to dissolve gold slower than cyanide. In the QCM tests the chloride-hypochlorite alternative showed highest dissolution rate of 8.6 mgcm-2h-1 at the redox potential of 900 mV vs. SHE. The thiocyanate system with ferric ion dissolved gold at a rate of 3.4 mgcm-2h-1 at the redox potential of 620 mV vs. SHE. Thiourea system with ferric ion showed the dissolution rate of 1.65 mg cm-2 h-1 at the redox potential of 450 mV vs. SHE. The results of the rapid tests were comparable with literature and were included in the case base of the Auric Advisor decision-support tool.
Słowa kluczowe
Rocznik
Strony
269--279
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Aalto University, Department of Materials Science and Engineering, PO Box 16200, 00076 Aalto, Helsinki, Finland
autor
  • Aalto University, Department of Materials Science and Engineering, PO Box 16200, 00076 Aalto, Helsinki, Finland
autor
  • Aalto University, Department of Materials Science and Engineering, PO Box 16200, 00076 Aalto, Helsinki, Finland
autor
  • Aalto University, Department of Materials Science and Engineering, PO Box 16200, 00076 Aalto, Helsinki, Finland
Bibliografia
  • 1. AYLMORE M.G., 2005, Alternative lixiviants to cyanide for leaching gold ores. Developments in Mineral Processing, Vol. 15. Mike D. Adams (Ed.), Elsevier, Amsterdam, pp. 501-539.
  • 2. DESCHENES G., 2005, Advances in the cyanidation of gold. Developments in Mineral Processing, Vol. 15. Mike D. Adams (Ed.), Elsevier, Amsterdam, pp. 479-500.
  • 3. EUROSTAT (European Commission), 2010, Impacts of Gold Extraction in the EU. Information Hub Enquiry 2010-001, online: http://ec.europa.eu/environment/waste/mining/pdf/IH_2010-001.pdf.
  • 4. FENG D., VAN DEVENTER J.S.J., 2011, Thiosulphate leaching of gold in the presence of orthophosphate and polyphosphate. Hydrometallurgy 106(1-2), 38–45.
  • 5. HILSON G, MONHEMIUS A.J., 2006, Review article: Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production 14(12-13), 1158-1167.
  • 6. JEFFREY M.I., CHOO W.L., BREUER P.L., 2005, A comparison of electrochemical methods and the rotating electrochemical quartz crystal microbalance for measuring hydrometallurgical reaction kinetics. Hydrometallurgy 79(1-2), 69-79.
  • 7. LAITOS J.G., 2012, The Current Status of Cyanide Regulations. Engineering & Mining Journal, online: http://www.e-mj.com/features/1656-the-current-status-of-cyanide-regulations.html.
  • 8. LI J., SAFARZADEH M.S., MOATS M.S., MILLER J.D., LEVIER K.M., DIETRICH M., WAN R.Y., 2012a, Thiocyanate hydrometallurgy for the recovery of gold. Part I: Chemical and thermodynamic considerations. Hydrometallurgy 113-114(1), 1-9.
  • 9. LI J., SAFARZADEH M.S., MOATS M.S., MILLER J.D., LEVIER K.M., DIETRICH M., WAN R.Y., 2012b, Thiocyanate hydrometallurgy for the recovery of gold. Part II: The leaching kinetics. Hydrometallurgy 113-114(1), 10-18.
  • 10. MURTHY D.S.R, PRASAD P.M., 1996, Leaching of gold and silver from Miller Process dross through non-cyanide leachants. Hydrometallurgy 42(1), 27-33.
  • 11. NAM K.S., JUNG B.H., AN J.W., HA T.J., TRAN T., KIM M.J., 2008, Use of chloride–hypochlorite leachants to recover gold from tailing. International Journal of Mineral Processing 86(1-4), 131-140.
  • 12. RINTALA L., AROMAA J., FORSEN O., 2012, Use of published data in the development of hydrometallurgical flow sheet for gold using decision-support tools. XXVI International Mineral Processing Congress 2012, New Delhi, India, 24-28.9.2012. p. 4485.
  • 13. SAUER C.S., RINTALA L., ROTH-BERGHOFER T., 2013, Knowledge formalisation for hydrometallurgical gold ore processing. Research and Development in Intelligent Systems XXX, M. Bramer, M. Petridis (eds.) Springer, pp. 291-304.
  • 14. SENANAYAKE G., 2004, Gold leaching in non-cyanide lixiviant systems: critical issues on fundamentals and applications. Minerals Engineering 17(6), 785–801.
  • 15. SYED S. 2012. Recovery of gold from secondary sources - A review. Hydrometallurgy 115-116(1), 30-51.
  • 16. VON BONSDORFF R., AROMAA J., FORSEN O., BARKER M., 2007, Rate of gold dissolution in concentrated cupric chloride solutions. Cu2007 Volume IV: The John Dutrizac International Symposium on Copper. Toronto, Canada, 25-30.8.2007, pp. 121-131.
  • 17. ZELINSKY A.G., NOVGORODTSEVA O.N., 2013, EQCM study of the dissolution of gold in thiosulfate solutions. Hydrometallurgy 138(1), 79–83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbd56223-38f0-4f1f-826d-c63d883ef921
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.