PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of sampling interval on the predictions of an asperity contact model of two-process surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contact of random machined two-process steel textures with a smooth, flat steel surface is discussed in this paper. Two-process surfaces were machined by vapour blasting followed by lapping. An elastic-plastic contact model was applied, assuming distributed radius of asperities. Calculation procedures allowed the mean surface separation, contact pressure, and area fraction to be computed as functions of sampling intervals. Parameters characterizing the summits important in contact mechanics were calculated for different sampling intervals. Plasticity index of two-process textures was calculated using the modified procedure. It was found that the influence of sampling interval on normal contact depended on the rough surface ability to plastic deformation. The use of a traditional method of calculation overestimated the plasticity index. Peaks from plateau surface region governed contact characteristics of two-process surfaces.
Rocznik
Strony
391--398
Opis fizyczny
Bibliogr. 47 poz., rys., wykr., tab.
Twórcy
autor
  • Rzeszów University of Technology, 8 Powstańcow Warszawy St., 35-959 Rzeszów
autor
  • University of Rzeszow, Center for Innovative Technologies, 16C Rejtana St., 35-959 Rzeszów, Poland
  • Poznań University of Technology, 5 Marii Skłodowskiej-Curie Sq., 60-965 Poznań, Poland
autor
  • Group of Technical Schools, 67 Adama Mickiewicza St., 37-300 Leżajsk, Poland
Bibliografia
  • [1] J. A. Greenwood and J.B.P. Williamson, “Contact of nominally flat surfaces”, Proc. Roy. Soc. London A295, 300‒319 (1966).
  • [2] G. Carbone and F. Bottiglione, “Asperity contact theories: Do they predict linearity between contact area and load?”, Journal of the Mechanics and Physics of Solids 56, 2555–2572 (2008).
  • [3] E.J. Abbott and F.A. Firestone, “Specifying surface quality – a method based on accurate measurement and comparison”, Mech. Engr. 55, 569 (1933).
  • [4] W.R. Chang, I. Etsion, and D.B. Bogy, “An elastic-plastic model for the contact of rough surfaces”, ASME Journal of Tribology 109, 257–263 (1987).
  • [5] Y. Zhao, D.M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow”, ASME Journal of Tribology 20, 86–93 (2000).
  • [6] L. Kogut and I. Etsion, “Elastic-plastic contact analysis of a sphere and a rigid flat”, ASME Journal of Applied Mechanics 69, 657–662 (2002).
  • [7] L. Kogut and I. Etsion, “A finite element based elastic-plastic model for the contact of rough surfaces”, Tribology Transactions 46, 383–390 (2003).
  • [8] R.L. Jackson and I. Green, “A finite element study of elasto-plastic hemispherical contact against a rigid flat”, ASME Journal of Tribology 127, 343–354 (2005).
  • [9] R.L. Jackson and I. Green, “A statistical model of elasto-plastic asperity contact between rough surfaces”, Tribology International 39, 906–914 (2006).
  • [10] S. Shankar and M.M. Mayuram, “A finite element based study on the elastic-plastic transition behavior in a hemisphere in contact with a rigid flat”, ASME Journal of Tribology 130, 044502 (2008).
  • [11] A. Megalingam and M.M. Mayuram, “A FEM based multiple asperity contact model”, Proceedings of the ASME/STLE International Joint Tribology Conference, Memphis, Tennessee, USA, 2009.
  • [12] L. Kogut and I. Etsion, “A static friction model for elastic-plastic contacting rough surfaces”, ASME Journal of Ttribology 126, 34–40 (2004).
  • [13] D. Zabulionis, R. Kacianauskas, D. Markauskas, and J. Rojek, “An investigation of nonlinear tangential contact behaviour of a spherical particle under varying loading”, Bull. Pol. Ac.: Tech. 60 (2), 265–278 (2012).
  • [14] P. Pawlus, “Digitisation of surface topography measurement results”, Measurement 40, 672–686 (2007).
  • [15] P. Pawlus and D.G. Chetwynd, “Efficient characterization of surface topography in cylinder bores”, Precision Engineering 19, 164–174 (1996).
  • [16] A.Y. Suh and A.A. Polycarpou, “Digital filtering methodology used to reduce scale of measurement effects in roughness parameters for magnetic storage supersmooth hard disks”, Wear 260, 538–548 (2006).
  • [17] E. Tomanik, “Modelling the asperity contact area on actual 3D surfaces”, SAE Paper 2005‒01‒1864, (2005).
  • [18] G. Pawar, P. Pawlus, I. Etsion, and B. Raeymaekers, “The effect of determining topography parameters on analyzing elastic contact between isotropic rough surfaces”, ASME Journal of Tribology 135 (1), 011401 (2013).
  • [19] J.I. McCool, “Limits of applicability of elastic contact models of rough surfaces”, Wear 86, 105–118 (1983).
  • [20] T.R. Thomas and B-G. Rosen, “Determination of the optimum sampling interval for rough contact mechanics”, Tribology International 33, 601–610 (2000).
  • [21] C. Vallet, D. Lasseux, H. Zahouani, and P. Sainsot, “Sampling effects on contact and transport properties between fractal surfaces”, Tribology International 4, 1132–1145 (2009).
  • [22] M. Ciavarella, G. Murolo, and G. Demelio, “On the elastic contact of rough surfaces: numerical experiments and comparisons with recent theories”, Wear 261, 1102–1113 (2006).
  • [23] W.E. Wilson, S.V. Angadi, and R.L. Jackson, “Surface separation and contact resistance considering sinusoidal elastic-plastic multi-scale rough surface contact”, Wear 268, 190–201 (2010).
  • [24] P. Wriggers and J. Reinelt, “Multi-scale approach for frictional contact of elastomers on rough rigid surfaces”, Comput. Methods Appl. Mech. Eng. 198, 1996–2008 (2009)
  • [25] P. Pawlus and W. Żelasko, “The importance of sampling interval for rough contact mechanics”, Wear 276, 121–129 (2012).
  • [26] W. Żelasko, “Contact of peaks of one-and two-process surface with circular or flat surface”, PhD Dissertation, Rzeszów University of Technology, Rzeszów, Poland, 2015, [in Polish].
  • [27] S. Kucharski and G. Starzyński, “Study of contact of rough surfaces: Modeling and experiment”, Wear 311, 167–179 (2014).
  • [28] J.A. Greenwood and J.J. Wu, “Surface roughness and contact: an apology”, Mechanica 36, 617–630 (2001).
  • [29] J.J. Wu, “The properties of asperities of real surfaces”, ASME Journal of Tribology 123, 872–883 (2000).
  • [30] M. Vermeulen and H. Hobleke, “Functionality and characterisation of textured sheet steel products”, in Advanced Techniques for Assessment Surface Topography, pp. 249–305, eds. L. Blunt and X. Jiang, Kogan Page Science, London, 2003.
  • [31] W. Hirst and A.E. Hollander, “Surface finish and damage in sliding”, Proc. R. Soc. London 337, 379–394 (1974).
  • [32] B.-G. Rosen and T.R. Thomas, “Relationship of the plasticity index to machining parameters”, 8th International Conference on Metrology and Properties of Engineering Surfaces, Huddersfield, UK, 2000.
  • [33] J. Kusinski, S. Kac, A. Kopia, A. Radziszewska, M. Rozmus- -Górnikowska, B. Major, L. Major, J. Marczak, and A. Lisiecki, “Laser modification of the materials surface layer – a review paper”, Bull. Pol. Ac.: Tech. 60 (4), 711–728 (2012).
  • [34] Y.-R. Jeng, “Impact of plateaued surfaces on tribological performance”, Tribology Transactions 39 (2), 354–361 (1996).
  • [35] W. Grabon, P. Pawlus, and J. Sep, “Tribological characteristics of one-process and two-process cylinder liner honed surfaces under reciprocating sliding conditions”, Tribology International 43 (10), 1882–1892 (2010).
  • [36] A. Dzierwa, P. Pawlus, and W. Żelasko, “Comparison of tribological behaviors of one-process and two-process steel surfaces in ball-on-disc tests”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 228, 1195–1210 (2014).
  • [37] S.E. Leefe, “Bi-Gaussian representation of worn surface topography in elastic contact problems”, in Tribology for Energy Conservation, pp. 281–90, eds. D. Dowson et al., Elsevier Science B.V., Amsterdam, 1998.
  • [38] E. Tomanik, “Modelling the asperity contact area on actual 3D surfaces”, SAE Paper 2005‒01‒1864, (2005).
  • [39] Z. Dimkovski, “Surfaces of honed cylinder liners”, PhD Thesis, Chalmers University of Technology, Sweden, 2011.
  • [40] J.A. Greenwood, “A unified theory of surface roughness”, Proc. Roy. Soc. London A393, 133–157 (1984).
  • [41] R.S. Sayles, and T.R. Thomas, “Measurements of the statistical properties of engineering surfaces”, ASME Journal of Lubrication Technology 101, 409–417 (1979).
  • [42] P. Pawlus, Topography: Measurement, Analysis, Influence, Rzeszów University of Technology Press, Rzeszów, Poland, 2005, [in Polish].
  • [43] D.J. Whitehouse, “The digital measurement of peak parameters on surface profiles”, Journal of Mechanical Engineering Science ImechE 20 (4), 221–226 (1978).
  • [44] M.C. Malburg, and J. Raja, “Characterization of surface texture generated by plateau-honing process”, CIRP Annals 42, 637–639 (1993).
  • [45] P. Pawlus, W. Żelasko, R. Reizer, and M. Wieczorowski, “Calculation of plasticity index of two-process surfaces”, Proceedings of the Institutions of Mechanical Engineers, Part J: Journal of Engineering Tribology, (unpublished).
  • [46] D.J. Whitehouse and J.F. Archard, “The properties of random surface of significance in their contact”, Proc. R. Soc. London A316, 97–121 (1970).
  • [47] W. Żelasko, P. Pawlus, A. Dzierwa, and S. Prucnal, “Experimental investigation of plastic contact between a rough steel surface and a flat sintered carbide surface”, Tribology International 100, 141–151 (2016)
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbd4c8b0-c6f8-4ff4-8e88-1bf79509cb3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.