PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ageing tests with high temperatures of prototype vibroacoustic isolators - under ballast mats (UBMs) based on recycled materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie odporności na starzenie w wysokich temperaturach prototypowych izolatorów wibroakustycznych – mat podpodsypkowych (UBMs) na bazie materiałów z recyklingu
Języki publikacji
EN
Abstrakty
EN
This study focuses on experimental ageing tests with high temperatures carried out on prototype under ballast mats (UBMs) according to the procedure of the European standard EN 17282, which was introduced in late 2020. Most of the analysed UBM samples are based on recycled elastomeric materials, such as styrene-butadiene rubber (SBR) granules and fibres from end-of-life car tyres and rebond polyurethane waste from polyurethane product manufacturing plants. Additionally, two variations of the mat based on mineral wool are analysed. Significant differences in the values of static and dynamic characteristics measured before and after the ageing tests are demonstrated, and permanent deformations of the recycled polyurethane-based mats are shown. Moreover, it is proved that the elastomeric mats based on recycled rubber materials (SBR granules and fibres) have high durability and are an effective solution in terms of protection against vibration and structure-borne noise from railway traffic. In addition, the authors propose criteria for assessing the results of the ageing test with high temperatures of UBMs tested according to the procedure of EN 17282.
PL
W artykule przedstawiono badania laboratoryjne odporności na starzenie w wysokich temperaturach prototypowych mat podpodsypkowych UBM, zrealizowane według procedury wprowadzonej do stosowania pod koniec 2020 r. normy europejskiej EN 17282. Niska odporność na starzenie w wysokich temperaturach, określona jako zmiana wartości statycznego i dynamicznego modułu sztywności mat UBM oraz ich masy może mieć wpływ na zmniejszenie ich skuteczności w zakresie tłumienia wibracji i hałasu wtórnego od ruchu kolejowego. Analizie poddano maty UBM na bazie materiałów elastomerowych z recyklingu (granulat i włókna gumowe SBR pochodzące ze zużytych opon samochodowych oraz poliuretan wtórnie wiązany pochodzący z odpadków z zakładów produkcji wyrobów poliuretanowych), a także – w celach porównawczych – dwie odmiany maty na bazie wełny kamiennej. Wykazano znaczące różnice wartości charakterystyk statycznych i dynamicznych względem wartości przed badaniem odporności na starzenie oraz trwałe odkształcenia w odniesieniu do mat na bazie poliuretanu z recyklingu. W przypadku mat elastomerowych na bazie gumowych materiałów recyklingowych (granulat i włókna gumowe SBR) wykazano zasadność ich stosowania biorąc pod uwagę trwałość eksploatacyjną oraz skuteczność w zakresie ochrony przed wibracjami i hałasem wtórnym pochodzących od ruchu kolejowego. Dodatkowo, na podstawie dokonanego przeglądu wymagań zagranicznych zarządców infrastruktury kolejowej oraz rekomendacji Międzynarodowego Związku Kolejowego (UIC), autorzy w artykule zaproponowali kryteria oceny wyniku badania odporności na starzenie w wysokich temperaturach w odniesieniu do mat UBM badanych według procedury nowej normy europejskiej EN 17282.
Słowa kluczowe
Rocznik
Strony
215--232
Opis fizyczny
Bibliogr. 30 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • [1] World Health Organization, Environmental Noise Guidelines for the European Region. Copenhagen, Denmark, 2018.
  • [2] UIC CODE 719-1 R: Recommendations for the use of Under Ballast Mats – UBM, 1st edition. UIC, 2011.
  • [3] M. Sol-Sánchez, F. Moreno-Navarro, and C. Rubio-Gámez, “The use of elastic elements in railway tracks: A state of the art review”, Construction and Building Materials, vol. 75, pp. 293-305, 2015, doi: 10.1016/j.conbuildmat.2014.11.027.
  • [4] M. Sol-Sánchez, L. Pirozzolo, F. Moreno-Navarro, and C. Rubio-Gámez, “A study into the mechanical performance of different configurations for the railway track section: A laboratory approach”, Engineering Structures, vol. 119, pp. 13-23, 2016, doi: 10.1016/j.engstruct.2016.04.008.
  • [5] R. Wang, G. Jing, B.Wang, M. Tavakol, and Y. Nateghi, “Under ballast mat – A review of recent developments, limitations, and future prospects”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 237, no. 8, pp. 983-995, 2023, doi: 10.1177/09544097221150494.
  • [6] Y. Xu, H. Han, N. Ning, L. Qie, X. Ling, and Y. Li, “Ballast loading plate design and mechanical behavior of under ballast mats”, Construction and Building Materials, vol. 325, 2022, doi: 10.1016/j.conbuildmat.2022.126486.
  • [7] B. Hou, D. Wang, B. Wang, X. Chen, and J. Pombo, “Vibration reduction in ballasted track using ballast mat: numerical and experimental evaluation by wheelset drop test”, Applied Sciences, vol. 12, no. 4, 2022, doi: 10.3390/app12041844.
  • [8] X. Sheng, W. Zheng, Z. Zhu, T. Luo, and Y. Zheng, “Properties of rubber under-ballast mat used as ballastless track isolation layer in high-speed railway”, Construction and Building Materials, vol. 240, 2020, doi: 10.1016/j.conbuildmat.2019.117822.
  • [9] T. Xin, Y. Ding, P. Wang, and L. Gao, “Application of rubber mats in transition zone between two different slab tracks in high-speed railway”, Construction and Building Materials, vol. 243, 2020, doi: 10.1016/j.conbuildmat.2020.118219.
  • [10] C. Kraśkiewicz, A. Zbiciak, A. Al Sabouni-Zawadzka, and A. Piotrowski, “Resistance to severe environmental conditions of prototypical recycling-based under ballast mats (UBMs) used as vibration isolators in the ballasted track systems”, Construction and Building Materials, vol. 319, 2022, doi: 10.1016/j.conbuildmat.2021.126075.
  • [11] C. Kraśkiewicz, A. Zbiciak, A. Al Sabouni-Zawadzka, and M. Marczak, “Analysis of the influence of fatigue strength of prototype under ballast mats (UBMs) on the effectiveness of protection against vibration caused by railway traffic”, Materials, vol. 14, no. 9, 2021, doi: 10.3390/ma14092125.
  • [12] C. Kraśkiewicz, A. Zbiciak, J. Pełczyński, and A. Al Sabouni-Zawadzka, “Experimental and numerical testing of prototypical under ballast mats (UBMs) produced from deconstructed tires – The effect of mat thickness”, Construction and Building Materials, vol. 369, 2023, doi: 10.1016/j.conbuildmat.2023.130559.
  • [13] L. Lapčik, P. Augustin, A. Pıìštěk, and L. Bujnoch, “Measurement of the dynamic stiffness of recycled rubber based railway track mats according to the DB-TL 918.071 standard”, Applied Acoustics, vol. 62, no. 9, pp.1123-1128, 2001, doi: 10.1016/S0003-682X(00)00098-0.
  • [14] L. Horníček and M. Lidmila, “Simulation of long-term behaviour of antivibration mats from rubber recyclate by means of cyclic loading”, presented at International Conference on Modelling and Simulation 2010, Prague, Czech Republic, 2010.
  • [15] M. Sol-Sánchez, T. Mattinzioli, J. M. Castillo-Mingorance, F. Moreno-Navarro, and M. C. Rubio-Gámez, “GRIDMAT—asustainable material combining mat and geogrid concept for ballasted railways”, Sustainability, vol. 14, no. 18, 2022, doi: 10.3390/su141811186.
  • [16] L. Lapčík, M. Vašina, B. Lapčíková, and Y. Murtaja, “Effect of conditioning on pu foam matrix materials properties”, Materials, vol. 15, no. 1, 2022, doi: 10.3390/ma15010195.
  • [17] R. Naima, T. Bellahcene, M. Aberkane, and M. Abdelaziz, “Thermo-oxidative ageing of a SBR rubber: effects on mechanical and chemical properties”, Journal of Polymer Research, vol. 27, 2020, doi: 10.1007/s10965-020-02330-y.
  • [18] C. Kraśkiewicz, A. Zbiciak, and A. Al Sabouni-Zawadzka, “Laboratory tests of resistance to severe environmental conditions of prototypical under sleeper pads applied in the ballasted track structures”, Archives of Civil Engineering, vol. 67, no. 3, pp. 319-331, 2021 doi: 10.24425/ace.2021.138058.
  • [19] C. Kraśkiewicz, A. Zbiciak, J. Medyński, and A. Al Sabouni-Zawadzka, “Laboratory testing of selected prototype under sleeper pads (USPs) – pull-off strength determined after the weather resistance test”, Archives of Civil Engineering, vol. 69, no. 2, pp. 483-501, 2023, doi: 10.24425/ace.2023.145280.
  • [20] K. Wei, Q. Yang, Y. Dou, F. Wang, and P. Wang, “Experimental investigation into temperature- and frequency-dependent dynamic properties of high-speed rail pads”, Construction and Building Materials, vol. 151, pp. 848-858, 2017, doi: 10.1016/j.conbuildmat.2017.06.044.
  • [21] S. Kaewunruen, C. Ngamkhanong, M. Papaelias, and C. Roberts, “Wet/dry influence on behaviors of closed-cell polymeric cross-linked foams under static, dynamic and impact loads”, Construction and Building Materials, vol. 187, pp. 1092-1102, 2018, doi: 10.1016/j.conbuildmat.2018.08.052.
  • [22] EN 17282:2020-10 Railway applications – Infrastructure – Under ballast mats. CEN, 2020.
  • [23] DIN 45673-5:2010-08 Mechanical vibration. Resilient elements used in railway tracks. Part 5: Laboratory test procedures for under-ballast mats. 2010.
  • [24] IRS 70719-1:2022-08: Way and Works – Track and Structure – Recommendations for the use of Under Ballast Mats (UBM).
  • [25] Israel Railways Ltd., Development division – planning branch, Railway tracks design guidelines for speed of up to 250 km/h, part 2 of 3, ver. 1, 2013.
  • [26] SNCF 512 Tapis sous balast. 1996.
  • [27] UIC CODE 719-1 R: Recommendations for the use of Under Ballast Mats – UBM, 1st edition. UIC, 2011.
  • [28] UNI 11059:2013 Elementi antivibranti – Materassini elastomerici per armamenti ferrotranviari – Indagini di qualifica e controllo delle caratteristiche meccaniche e delle prestazioni. Antivibrating elements – Elastomeric mats for railway/tramway tracks – Qualification and check tests to determine their mechanical characteristics and performance parameters.
  • [29] DBS 918 145-01 Technische Lieferbedingungen, Spannbetonschwellen mit elastischer Sohle – Elastische Schwellensohlen. DB Netz AG, 2016.
  • [30] C. Kraśkiewicz, H. Anysz, A. Zbiciak, M. Płudowska-Zagrajek, and A. Al Sabouni-Zawadzka, “Artificial neural networks as a tool for selecting the parameters of prototypical under sleeper pads produced from recycled rubber granulate”, Journal of Cleaner Production, vol. 405, 2023, doi: 10.1016/j.jclepro.2023.136975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbcf317d-4fd0-4a75-a18a-87dd2297ea13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.