PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nikiel i jego związki – w przeliczeniu na Ni, z wyłączeniem tetrakarbonylku niklu Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nickel and its compounds – as Ni, excluding nickel tetracarbonyl Documentation of proposed values of occupational exposure limits (OELs)
Języki publikacji
PL
Abstrakty
PL
Nikiel (Ni) jest metalem o charakterystycznym połysku. Znalazł zastosowanie do produkcji stopów, w galwanizacji, produkcji baterii, protez, pigmentów, w przemyśle ceramicznym i komputerowym. Skutki narażenia ludzi na nikiel i jego związki w warunkach zawodowych obejmują głównie wpływ na układ oddechowy (w tym ryzyko wystąpienia chorób nowotworowych płuc i jamy nosowej, zwłóknienie i pylicę płuc, astmę oskrzelową) oraz działanie uczulające na skórę i układ oddechowy. Szkodliwy wpływ niklu i jego związków na układ oddechowy potwierdzają wyniki badań doświadczalnych na zwierzętach. Długotrwałe narażenie na nikiel i jego związki powodowało również osłabienie układu odpornościowego oraz skutki nefro- i hepatotoksyczne. Rozpuszczalne sole niklu nie wywoływały mutacji w komórkach bakterii, ale genotoksyczność niklu i jego związków potwierdzono w badaniach z użyciem komórek eukariotycznych ssaków, przy czym jedynie przy wysokich stężeniach niklu. Nikiel i jego związki mogą przenikać przez łożysko oraz do mleka matki. Działanie rakotwórcze na układ oddechowy po narażeniu inhalacyjnym było także wykazane w badaniach na szczurach, głównie dla siarczku niklu oraz tlenku niklu. Zaproponowano przyjęcie wartości wiążących dla związków niklu ujętych w dyrektywie Parlamentu Europejskiego i Rady (UE) 2022/431 z dnia 9 marca 2022 r., zmieniającej dyrektywę 2004/37/WE, jako wartości NDS: 0,01 mg Ni/m³ (frakcja respirabilna), 0,05 mg Ni/m³ (frakcja wdychalna). Zaproponowano przyjęcie do 17 stycznia 2025 r. włącznie okresu przejściowego, podczas którego obowiązywać będzie wartość NDS wynosząca 0,1 mg/m³ w odniesieniu do frakcji wdychalnej związków niklu. Proponuje się oznakować jako substancje o działaniu: uczulającym, rakotwórczym kat. 1A – związki niklu (Carc. 1A), rakotwórczym kat. 2 – nikiel metaliczny (Carc. 2), szkodliwym na rozrodczość.
EN
Nickel (Ni) is a metal with a distinctive luster, and has found applications in alloying, electroplating, battery manufacturing, prosthetics, pigments, ceramics and computer industries. The effects of human exposure to nickel and its compounds under occupational conditions mainly include effects on the respiratory system (including the risk of cancer of the lungs and nasal cavity, fibrosis and pneumoconiosis, bronchial asthma) and sensitization of the skin and respiratory system. The harmful effects of nickel and its compounds on the respiratory system are confirmed by the results of experimental studies on animals. Long-term exposure to nickel and its compounds also caused immune system impairment and nephro- and hepatotoxic effects. Soluble nickel salts did not induce mutations in bacterial cells, but the genotoxicity of nickel and its compounds has been confirmed in studies using mammalian eukaryotic cells, with only high nickel concentrations. Nickel and its compounds can cross the placenta and into breast milk. Respiratory carcinogenic effects after inhalation exposure have also been demonstrated in rat studies, mainly in regard of nickel sulfide and nickel oxide. It has been proposed to adopt the binding values for nickel compounds included in Directive (EU) 2022/431 of the European Parliament and of the Council of March 9, 2022, amending Directive 2004/37/EC, as the NDS values: 0.01 mg Ni/m³ (respirable fraction), 0.05 mg Ni/m³ (inhalable fraction). It is proposed to adopt a transitional period up to and including January 17, 2025, during which an NDS value of 0.1 mg/m³ will apply to the inhalable fraction of nickel compounds. It is proposed to label as substances with the following effects: sensitizer, carcinogen cat. 1A – nickel compounds, Carc. 2 – carcinogenic cat. 2 – nickel metal, reproductive toxicity.
Rocznik
Strony
29--104
Opis fizyczny
Bibliogr. 266 poz., tab.
Twórcy
autor
  • Uniwersytet Medyczny w Łodzi Katedra i Zakład Toksykologii 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
  • Uniwersytet Medyczny w Łodzi Katedra i Zakład Toksykologii 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
  • Uniwersytet Medyczny w Łodzi Katedra i Zakład Toksykologii 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
Bibliografia
  • 1. ACGIH, American Conference of Governmental Industrial Hygienists (2022). Nickel and inorganic compounds, including nickelsubsulfide. Documentation of the TLVs and BEIs with other worldwide occupational exposure values.
  • 2. Adkins B. Jr., Richards J.H., Gardner D.E. (1979). Enhancement of experimental respiratory infection following nickel inhalation. Environ. Res. 20, 33–42.
  • 3. Ambrose A.M., Larson P.S., Borzelleca J.F. i in. (1976). Long term toxicologic assessment of nickel in rats and dogs. J. Food Sci. Technol. 13, 181–187.
  • 4. American Biogenics Corporation (1988). Ninety day gavage study in albino rats using nickel. Final report submitted to U.S. Environmental Protection Agency, Office of Solid Waste. Submitted by Research Triangle Institute and American Biogenics Corporation.
  • 5. Andersen A., Svenes K.B. (1989). Determination of nickel in lung specimens of thirty-nine autopsied nickel workers. Int. Arch. Occup. Environ. Health 61, 289–295.
  • 6. Andersen A., Berge S.R., Engeland A. i in. (1996). Exposure to nickel compounds and smoking in relation to incidence of lung and nasal cancer among nickel refinery workers. Occup. Environ. Med. 53, 708–713.
  • 7. Angerer J., Heinrich-Ramm R., Lehnert G. (1989). Occupational exposure to cobalt and nickel: biological monitoring. Int. J. Environ. Anal. Chem. 35, 81–88.
  • 8. Anttila A., Pukkala E., Aitio A. i in. (1998). Update of cancer incidence among workers at a copper/nickel smelter and nickel refinery. Int. Arch. Occup. Environ. Health 71, 245–250.
  • 9. Arena V.C., Sussman N.B., Redmond C.K. i in. (1998). Using alternative comparison populations to assess occupationrelated mortality risk: results for the high nickel alloys workers cohort. J. Occup. Environ. Med. 40, 907–916.
  • 10. Arita A., Niu J., Qu Q. i in. (2012). Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ. Health Perspect. 120, 198–203.
  • 11. ATSDR, Agency for Toxic Substances and Disease Registry (2005). Toxicological profile for nickel. Atlanta, GA, U.S. Department of Health and Human Services, Public Health Service. Basketter D.A., Scholes E.W., Kimber I. (1994). The performance of the local lymph node assay with chemicals identified as contact allergens in the human maximization test. Food Chem. Toxicol. 32(6), 543–547.
  • 12. Baur X., Bakehe P. (2014). Allergens causing occupational asthma: an evidence-based evaluation of the literature. Int. Arch. Occup. Environ. Health 87(4), 339–363.
  • 13. Benson J.M., Henderson R.F., McClellan R.O. i in. (1986). Comparative acute toxicity of four nickel compounds to F344 rat lung. Fundam Appl Toxicol. 7, 340–347.
  • 14. Benson J.M., Carpenter R.L., Hahn E.E. i in. (1987). Comparative inhalation toxicity of nickel subsulfide to F344/N rats and B6C3F1 mice exposed for 12 days. Fundam. Appl. Toxicol. 9, 251–265.
  • 15. Benson J.M., Burt D.G., Carpenter R.I. i in. (1988). Comparative inhalation toxicity of nickel sulfate to F344/N rats and B6C3F1 mice exposed for twelve days. Fundam. Appl. Toxicol. 10, 164–178.
  • 16. Benson J.M., Chang I.Y., Cheng Y.S. i in. (1995). Particle clearance and histopathology in lungs of F344/N rats and B6C3F1 mice inhaling nickel oxide or nickel sulfate. Fundam. Appl. Toxicol. 28, 232–244.
  • 17. Bernacki E.J., Parsons G.E., Sunderman F.W. Jr. (1978). Investigation of exposure to nickel and lung cancer mortality: case control study at aircraft engine factory. Ann. Clin. Lab. Sci. 8(3), 190–194.
  • 18. Bingham E.W., Barkley W., Zerwas M. i in. (1972). Responses of alveolar macrophages to metals: I. Inhalation of lead and nickel. Arch. Environ. Health 25, 406–414.
  • 19. Block G.T., Yeung M. (1982). Asthma induced by nickel. J. Am. Med. Assoc. 247, 1600–1602.
  • 20. Brandrup F., Larsen F.S. (1979). Nickel dermatitis provoked by buttons in blue jeans. Contact Dermatitis 5, 148–150.
  • 21. Braszczyńska Z., Szaciłło H., Król B. i in. (1994). Ocena narażenia zawodowego na metale rakotwórcze w hutnictwie metali nieżelaznych na terenie Górnego Śląska. Med. Pr. 41(1), 1–27.
  • 22. Bright P., Burge P.S., O’Hickey S.P. i in. (1997). Occupational asthma due to chrome and nickel electroplating. Thorax 52, 28–32.
  • 23. Bruynzeel D.P., Diepgen T.L., Andersen K.E. i in. (2005). Monitoring the European standard series in 10 centres 1996- 2000. Contact Dermatitis 53(3), 146–149.
  • 24. Burrows D., Creswell S., Merrett J.D. (1981). Nickel, hands and hip prostheses. Br. J. Dermatol. 105(4), 437–443.
  • 25. Carvalho S.M., Ziemer P.L. (1982). Distribution and clearance of 63Ni administered as 63NiCl2 in the rat: intratracheal study. Arch. Environ. Contam. Toxicol. 11(2), 245–248. Centralny Rejestr Danych o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym (2020). IMP, Łódź [dane niepublikowane].
  • 26. Chang J., Watson W.P., Randerath E. i in. (1993). Bulky DNAadduct formation induced by Ni(II) in vitro and in vivo as assayed by 32P-postlabelling. Mutat. Res. 291, 147–159.
  • 27. Chen C.-Y., Wang Y.-F., Huang W.-R. i in. (2003). Nickel induces oxidative stress and genotoxicity in human lymphocytes. Toxicol. App. Pharmacol. 189, 153–159.
  • 28. Chen C.-Y., Lin T.-K., Chang Y.-C. i in. (2010). Nickel(II)- induced oxidative stress, apoptosis, G2/M arrest, and genotoxicity in normal rat kidney cells. J. Toxicol. Environ. Health A 73, 529–539.
  • 29. Chen Y., Gao B., Cheng H. i in. (2017). Survey of occupational allergic contact dermatitis and patch test among clothing employees in Beijing. Biomed Res. Int. 3102358.
  • 30. Chorvatovicová D. (1983). [The effect of NiC12 on the level of chromosome aberrations in Chinese hamster Cricetulus grseus]. Biológia (Bratislava) 38, 1107–1112.
  • 31. Ciccarelli R.B., Wetterhahn K.E. (1984). Nickel-bound chromatin, nucleic acids, and nuclear proteins from kidney and liver of rats treated with nickel carbonate in vivo. Cancer Res. 44, 3892–3897.
  • 32. Cirla A.M., Baruffini A., Pisati G. i in. (1982). [Allergic bronchial reactions due to stainless steel welding fumes]. Lav. Um. 30, 17–20.
  • 33. Chashschin V.P., Artunina G.P., Norseth T. (1994). Congenital defects, abortion and other health effects in nickel refinery workers. Sci. Total Environ. 148, 287–291.
  • 34. Chovil A., Sutherland R.B., Halliday M. (1981). Respiratory cancer in a cohort a nickel sinter plant workers. Br. J. Ind. Med. 38(4), 327–333.
  • 35. Christensen O.B., Lagesson V. (1981). Nickel concentration of blood and urie after oral administration. Ann. Clin. Lab. Sci. 11, 119–125.
  • 36. Costa M. (1996). Mechanisms of nickel genotoxicity and carcinogenicity. [W:] Toxicology of metals. [Red.] L.W. Chang. CRC Press, Boca Raton, 245–251.
  • 37. Costa M., Mollenhauer H.H. (1980). Phagocytosis of nickel subsulfide particles during the early stages of neoplastic transformation in tissue culture. Cancer Res. 40, 2688–2694.
  • 38. Costa M., Zhuang Z., Huang X. i in. (1994). Molecular mechanisms of nickel carcinogenesis. Sci. Total Environ. 148, 191–199.
  • 39. Cruz M.J., Costa R., Marquilles E. i in. (2006). [Occupational asthma caused by chromium and nickel]. Arch. Bronconeumol. 42, 302–306.
  • 40. Daldrup T., Haarhoff K., Szathmary S.C. (1983). Toedliche nickel sulfate - intoxikation. Bericht. Gerichtl. Med. 41, 141– 144.
  • 41. Deknudt G., Léonard A. (1982). Mutagenicity tests with nickel salts in the male mouse. Toxicology 25, 289–292.
  • 42. Deng C.Z., Lee H.C.H., Xian H.L. i in. (1988). Chromosomal aberrations and sister chromatid exchanges of peripheral blood lymphocytes in Chinese electroplating workers: effect of nickel and chromium. J. Trace Elem. Exp. Med. 1, 57–62.
  • 43. DFG, Deutsche Forschungsgemeinschaft (2022). List of MAK and BAT values.
  • 44. Dhir H., Agarwal K., Sharma A. i in. (1991). Modifying role of Phyllantus emblica and ascorbic acid against nickel clastogenicity in mice. Cancer Lett. 59, 9–18.
  • 45. Dieter M.P., Jameson C.W., Tucker A.N. i in. (1988). Evaluation of tissue disposition, myelopoietic, and immunologic responses in mice after long-term exposure to nickel sulfate in the drinking water. J. Toxicol. Environ. Health 24, 357–372.
  • 46. Dobecki M., Matych S., Kamecki R. i in. (1988). [Evaluation of occupational exposure to nickel and other metals based on the analysis of air in the production of nickel alloys]. Med. Pr. 39(6), 399–405.
  • 47. Doll R. (1990). Report of the International Committee on Nickel Carcinogenesis in Man. Scand. J. Work Environ. Health 16, 1–82.
  • 48. Dolovich J., Evans S.L., Nieboer E. (1984). Occupational asthma from nickel sensitivity: I. Human serum albumin in the antigenic determinant. Br. J. Ind. Med. 41, 51–55.
  • 49. Dotterud L.K., Falk E.S. (1994). Metal allergy in north Norwegian schoolchildren and its relationship with ear piercing and atopy. Contact Dermatitis 31, 308–313.
  • 50. Drexler H., Greim H. (2004). Nickel (leichtlösliche Nickelverbindungen wie Nickelacetat und vergleichbare lösliche Salze, Nickelchlorid, Nickelhydroxid, Nickelsulfat). 12. Lieferung. Wiley-VCH, Weinheim [cyt. za: DFG 2022].
  • 51. Dunnick J.K., Elwell M.R., Benson J.M. i in. (1989). Lung toxicity after 13-week inhalation exposure to nickel oxide, nickel subsulfide, or nickel sulfate in F344/N rats and B6C3F1 mice. Fundam. Appl. Toxicol. 12, 584–594.
  • 52. Dunnick J.K., Elwell M.R., Radovsky A.E. i in. (1995). Comparative carcinogenic effects of nickel subsulfide, nickel oxide, or nickel sulfate hexahydrate chronic exposures in the lung. Cancer Res. 55, 5251–5256.
  • 53. Easton D.F., Peto J., Morgan L.G. i in. (1992). Respiratory cancer mortality in Welsh nickel refiners: which nickel compounds are responsible? [W:] Nickel and human health: current perspectives. [Red.] E. Niebor, J.O. Nrigau. Wiley & Sons, New York, 603–619.
  • 54. ECHA, European Chemical Agency (2017). Proposal by the European Chemical Agency (ECHA) in support of occupational exposure limit values for nickel and its compounds in the workplace. October 2017.
  • 55. ECHA, European Chemical Agency (2018). Committee fo Risk Assessment opinion on scientific evaluation of occupational exposure limits for nickel and its compounds. ECHA/RAC/ A77-O-0000001412-86-189/F. 9 March 2018.
  • 56. Efremenko A., Campbell J., Dodd D. i in. (2014). Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel subsulfide. Toxicol. Appl. Pharmacol. 279, 441–454.
  • 57. Efremenko A., Campbell J., Dodd D. i in. (2017). Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel sulfate. Environ. Mol. Mutagen. 58, 607–618.
  • 58. EFSA, European Food Safety Agency (2015). EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA Journal 13(2), 4002.
  • 59. Emmett E.A., Risby T.H., Jiang L. i in. (1988). Allergic contact dermatitis to nickel: bioavailability from consumer products and provocation threshold. J. Am. Acad. Dermatol. 19(2 Pt 1), 314–322.
  • 60. English J.C., Parker R.D.R., Sharma R.E. i in. (1981). Toxicokinetics of nickel in rats after intratracheal administration of a soluble and insoluble form. Am. Ind. Hyg. Assoc. J. 42, 486–492.
  • 61. Enterline P.E., Marsh G.M. (1982). Mortality among workers in a nickel refinery and alloy manufacturing plant in West Virginia. J. Nat. Cancer Inst. 68, 925–933.
  • 62. ESSCA Writing Group (2008). The European Surveillance System of Contact Allergies (ESSCA): results of patch testing the standard series, 2004. J. Eur. Acad. Dermatol. Venereol. 22, 174–181.
  • 63. Estlander T., Kanerva L., Tupasela O. i in. (1993). Immediate and delayed allergy to nickel with contact urticaria, rhinitis, asthma and contact dermatitis. Clin. Exp. Allergy 23, 306–310.
  • 64. Eun H.C., Marks R. (1990). Dose-response relationships for topically applied antigens. Br. J. Dermatol. 122(4), 491–499.
  • 65. EU RAR, EU Risk Assessment Report (2008a). Nickel. Danish Environmental Protection Agency, Copenhagen. EU RAR, EU Risk Assessment Report (2008b). Nickel and nickel compounds. Danish Environmental Protection Agency, Copenhagen.
  • 66. EU RAR, EU Risk Assessment Report (2008c). Nickel sulphate. Danish Environmental Protection Agency, Copenhagen.
  • 67. EU RAR, EU Risk Assessment Report (2008d). Nickel chloride. Danish Environmental Protection Agency, Copenhagen.
  • 68. Evans E.W., Miller M.L., Andringa A. i in. (1995). Behavioral, histological, and neurochemical effects of nickel (II) on the rat olfactory system. Toxicol. Appl. Pharmacol. 130, 209– 220.
  • 69. Fernández-Nieto M., Quirce S., Carnés J. i in. (2006). Occupational asthma due to chromium and nickel salts. Int. Arch. Occup. Environ Health. 79(6), 483–486.
  • 70. Finch G.L., Fisher R.L., Hayes T.L. (1987). The pulmonary effects and clearance of intratracheally instilled Ni3S2 and TiO2 in mice. Environ. Res. 42, 83–93.
  • 71. Gawęda E. (2005). Narażenie zawodowe na rakotwórcze metale i metaloidy w procesach rafinacji metali ciężkich. Med. Pr. 56(2), 161–165.
  • 72. Gawkrodger D.J., Cook S.W., Fell G.S. i in. (1986). Nickel dermatitis: the reaction to oral nickel challenge. Br. J. Dermatol. 115, 33–38.
  • 73. Gawkrodger D., McLeod C., Dobson K. (2012). Nickel skin levels in different occupations and an estimate of the threshold for reacting to a single open application of nickel in nickel‐ allergic subjects. Br. J. Dermatol. 166, 82–87.
  • 74. Gesundheitsschädliche Arbeitsstoffe: Toxikologisch medizinische Begründungen von MAK-Werten (2008). 45. Lieferung. Nickel und Nickelverbindungen. [Red.] H. Hartwig. Wiley-VCH, Weinheim.
  • 75. Ghezzi I., Baldasseroni A., Sesana G. i in. (1989). Behaviour of urinary nickel in low-level occupational exposure. Med Lav. 80(3), 244–250.
  • 76. GIS, Główny Instytut Sanitarny (2020). Dane Głównego Inspektoratu Sanitarnego dla Międzyresortowej Komisji ds. NDS i NDN. Warszawa 2020 [materiały niepublikowane, przygotowane dla Zespołu Ekspertów ds. Czynników Chemicznych Międzyresortowej Komisji ds. NDS i NDN].
  • 77. Gitlitz P.H, Sunderman F.W., Goldblatt P.J. (1975). Aminoaciduria and proteinuria in rats after single intraperitoneal injection of Ni(II). Toxicol. Appl. Pharmacol. 34, 430–440.
  • 78. Goodman J.E., Prueitt R.L., Thakali S. i in. (2011). The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung. Crit. Rev. Toxicol. 41, 142–174.
  • 79. Goodwin B.F., Crevel R.W., Johnson A.W. (1981). A comparison of three guinea-pig sensitization procedures for the detection of 19 reported human contact sensitizers. Contact Dermatitis 7(5), 248–258. Goon A.T.,
  • 80. Goh C.L. (2005). Metal allergy in Singapore. Contact Dermatitis 52(3), 130–132.
  • 81. Graham J.A., Miller F.J., Daniels M.J. i in. (1978). Influence of cadmium, nickel and chromium on primary immunity in mice. Environ. Res. 16, 77–87.
  • 82. Gray L.E. Jr, Kavlock R.J., Ostby J. i in. (1986). An evaluation of figure-eight maze activity and general behavioral development following prenatal exposure to forty chemicals: effects of cytosine arabinoside, dinocap, nitrofen, and vitamin A. Neurotoxicology 7, 449–462.
  • 83. Grimsrud T.K., Berge S.R., Haldorsen T. i in. (2002). Exposure to different forms of nickel and risk of lung cancer. Am. J. Epidemiol. 156, 1123–1132.
  • 84. Grimsrud T.K., Peto J. (2006). Persisting risk of nickel related lung cancer and nasal cancer among Clydach refiners. Occup. Environ. Med. 63, 365–366.
  • 85. Haber L.T., Erdreicht L., Diamond G.L. i in. (2000). Hazard identification and dose response of inhaled nickel-soluble salts. Regul. Toxicol. Pharmacol. 31, 210–230.
  • 86. Haley P.J., Shopp G.M., Benson J.M. i in. (1990). The immunotoxicity of three nickel compounds following 13- week inhalation exposure in the mouse. Fundam. Appl. Toxicol. 15, 476–487.
  • 87. Hałatek T., Iżycki J. (1997). Nikiel i jego związki. Dokumentacja proponowanych wartości dopuszczalnych poziomów narażenia zawodowego. Podst. Met. Oceny Srodow. Pr. 15, 75–147.
  • 88. Hannu T., Piipari R., Tuppurainen M. i in. (2007). Occupational asthma caused by stainless steel welding fumes: a clinical study. Eur. Respir. J. 29, 85–90.
  • 89. Hartmann M., Hartwig A. (1998). Disturbance of DNA damage recognition after UV-irradiation by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis 19, 617– 621.
  • 90. Hartwig A., Krüger I., Beyersmann D. (1994). Mechanisms in nickel genotoxicity: the significance of interactions with DNA repair. Toxicol. Lett. 72, 353–358.
  • 91. Hassler E., Lind B., Nilsson B. i in. (1983). Urinary and fecal elimination of nickel in relation to air-borne nickel in a battery factory. Ann. Clin. Lab. Sci. 13, 217–224.
  • 92. Hicks R., Hewitt P.J., Lam H.F. (1979). An investigation of the experimental induction of hypersensitivity in the guinea pig by material containing chromium, nickel and cobalt from arc welding fumes. Int. Arch. Allergy Appl. Immunol. 59(3), 265–272.
  • 93. Hindsén M., Bruze M., Christensen O.B. (2001). Flareup reactions after oral challenge with nickel in relation to challenge doses and intensity and time of previous patch test reactions. J. Am. Acad. Dermatol. 44(4), 616–623.
  • 94. Hisatomi K., Ishii H., Hashiguchi K. i in. (2006). Interstitial pneumonia caused by inhalation of fumes of nickel and chrome. Respirology 11(6), 814–817.
  • 95. Horie A., Haratake J., Tanaka I. i in. (1985). Electron microscopical findings with special reference to cancer in rats caused by inhalation of nickel oxide. Biol. Trace Elem. Res. 7, 223–239.
  • 96. Hostynek J.J. (2006). Sensitization to nickel: etiology, epidemiology, immune reactions, prevention, and therapy. Rev. Environ. Health 21(4), 253–280.
  • 97. HSDB, Hazardous Substance Database (2010). Agency for Toxic Substances and Disease Registry, Public Health Service. Dept. of Health and Human Services. Atlanta, GA.
  • 98. Hsieh T.H., Yu C.P., Oberdörster G. (1999a). A dosimetry model of nickel compounds in the rat lung. Inhal. Toxicol. 11, 229–248.
  • 99. Hsieh T.H., Yu C.P., Oberdörster G. (1999b). Modeling of deposition and clearance of inhaled Ni compounds in the human lung. Regul. Toxicol. Pharmacol. 30, 18–28.
  • 100. Hueper W.C. (1958). Experimental studies in metal cancerigenesis: IX. Pulmonary lesions in guinea-pigs and rats exposed to prolonged inhalation of powdered metallic nickel. AMA Arch. Pathol. 65, 600–607.
  • 101. IARC, International Agency for Research on Cancer (1990). Chromium, nickel and welding. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol. 49. IARC, Lyon, 257–445.
  • 102. IARC, International Agency for Research on Cancer (2012). Nickel and nickel compounds. [W:] Chemical agents and related occupations. IARC monographs on the evaluation of carcinogenic risks of chemicals to humans. Vol. 100C. IARC, Lyon,
  • 103. ICNCM, International Committee on Nickel Carcinogenicity in Man (1990). Report of the International Committee on Nickel Carcinogenesis in Man. Scand. J. Work Environ. Health 16, 1–82.
  • 104. Ikarashi Y., Tsuchiya T., Nakamura A. (1992). Detection of contact sensitivity of metal salts using the murine local lymph node assay. Toxicol. Lett. 62(1), 53–61.
  • 105. Ilbäck N.G., Fohlman J., Friman G. (1994). Changed distribution and immune effects of nickel augment viralinduced inflammatory heart lesions in mice. Toxicology 91, 203–219.
  • 106. Ishimatsu S., Kawamoto T., Matsuno K. i in. (1995). Distribution of various nickel compounds in rat organs after oral administration. Biol. Trace Elem. Res. 49, 43–52.
  • 107. Jensen C.S., Menné T., Lisby S. i in. (2003). Experimental systemic contact dermatitis from nickel: a dose-response study. Contact Dermatitis 49(3), 124–132.
  • 108. Johansen P., Wäckerle-Men Y., Senti G. i in. (2010). Nickel sensitisation in mice: a critical appraisal. J. Dermatol. Sci. 58, 186–192.
  • 109. Johansson A., Camner P., Jarstrand C. i in. (1980). Morphology and function of alveolar macrophages after long-term nickel exposure. Environ. Res. 23, 170–180.
  • 110. Johansson A., Camner P. (1986). Adverse effects of metals on the alveolar part of the lung. Scan. Electron. Microsc. 2, 631–637.
  • 111. Johansson A., Lundborg M., Skog S. i in. (1987). Lysozyme activity in ultrastructurally defined fractions of alveolar macrophages after inhalation exposure to nickel. Br. J. Ind. Med. 44, 47–52.
  • 112. Johansson A., Wiernik A., Lundborg M. i in. (1988). Alveolar macrophages in rabbits after combined exposure to nickel and trivalent chromium. Environ. Res. 46, 120–132.
  • 113. Johansson A., Curstedt T., Robertson B. i in. (1989). Lung lesions after experimental combined exposure to nickel and trivalent chromium. Environ. Res. 50, 103–119.
  • 114. Judde J.G., Breillout F., Clemenceau C. i in. (1987). Inhibition of rat natural killer cell function by carcinogenic nickel compounds: preventive action of manganese. J. Natl. Cancer. Inst. 78, 1185–1190.
  • 115. Käkelä R., Käkelä A., Hyvärinen H. (1999). Effects of nickel chloride on reproduction of the rat and possible antagonistic role of selenium. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 123(1), 27–37.
  • 116. Kanerva L., Kiilunen M., Jolanki R. i in. (1997). Hand dermatitis and allergic patch test reactions caused by nickel in electroplaters. Contact Dermatitis 36(3), 137–140.
  • 117. Kanerva L., Estlander T., Jolanki R. (1998). Bank clerk’s occupational allergic nickel and cobalt contact dermatitis from coins. Contact Dermatitis 38(4), 217–218.
  • 118. Kang K., Kim S.-K., Kim C.-J. i in. (2008). The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers. Nano Lett. 8(2), 431–436.
  • 119. Karaczyn A.A., Cheng R.Y., Buzard G.S. i in. (2009). Truncation of histone H2A’s C-terminal tail, as is typical for Ni(II)-assisted specific peptide bond hydrolysis, has gene expression altering effects. Ann. Clin. Lab. Sci. 39, 251–262.
  • 120. Karjalainen S., Kerttula R., Pukkala E. (1992). Cancer risk among workers at a copper/nickel smelter and nickel refinery in Finland. Int. Arch. Occup. Environ. Health 63, 547–551.
  • 121. Kasprzak K.S. (1987). Nickel. [W:] Genotoxic and carcinogenic metals: environmental and occupational occurrence and exposure. [Red.] L. Fishbein, A. Furst, M.A. Mehhnan. Princeton Sci. Pub., Princeton. 145–183.
  • 122. Kasprzak K.S., Poirier L.A. (1985). Effects of calcium(II) and magnesium(II) on nickel(II) uptake and stimulation of thymidine incorporation into DNA in the lungs of strain A mice. Carcinogenesis 6(12), 1819–1821.
  • 123. Kasprzak K.S., Diwan B.A., Konishi N. i in. (1990). Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats. Carcinogenesis 11, 647–652.
  • 124. Kasprzak K.S., Jaruga P., Zastawny T.H. i in. (1997). Oxidative DNA base damage and its repair in kidneys and livers of nickel(II)-treated male F344 rats. Carcinogenesis 18, 271–277.
  • 125. Kasprzak K.S., Bal W., Karaczyn A.A. (2003). The role of chromatin damage in nickel-induced carcinogenesis: a review of recent developments. J. Environ. Monit. 5(2), 183–187.
  • 126. Katsifis S.P., Shamy M., Kinney L.P. i in. (1998). Interaction of nickel with UV-light in the induction of cytogenetic effects in human peripheral lymphocytes. Mutat. Res. 422, 331–337.
  • 127. Kawanishi S., Oikawa S., Inoue S. i in. (2002). Distinct mechanisms of oxidative DNA damage induced by carcinogenic nickel subsulfide and nickel oxides. Environ. Health Perspect. 110(Suppl 5), 789–791.
  • 128. Ke Q., Li Q., Ellen T.P. i in. (2008). Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNKMAPK pathway. Carcinogenesis 29(6), 1276–1281.
  • 129. Kiilunen M., Utela J., Rantanen T. i in. (1997). Exposure to soluble nickel in electrolytic nickel refining. Ann. Occup. Hyg. 41, 167–188.
  • 130. Kimber I., Quirke S., Beck M.H. (1990). Attempts to identify the causative allergen in cases of allergic contact dermatitis using an in vitro lymphocyte transformation test. Toxicol. In Vitro. 4(4–5), 302–306.
  • 131. Kimber I., Basketter D.A., McFadden J.P. i in. (2011). Characterization of skin sensitizing chemicals: a lesson learnt from nickel allergy. J. Immunotoxicol. 8(1), 1–2.
  • 132. Klein C.B., Costa M. (1997). DNA methylation, heterochromatin and epigenetic carcinogens. Mutat. Res. 386(2), 163–180.
  • 133. Kodama Y., Tanaka I., Matsuno K. i in. (1985). Pulmonary deposition and clearance of inhaled nickel oxide aerosol. [W:] Progress in nickel toxicology. [Red.] S. Brown, F.W. Sunderman Jr. Proceedings of the 3rd International Conference on Nickel Metabolism and Toxicology, Paris, 4-7 September 1984. Oxford, Blackwell Scientific Publications, 81–84.
  • 134. Komisja Europejska (2020). Wniosek COM (2020) 571 final, https://eur-lex.europa.eu/legal-content/PL/TXT/ PDF/?uri=CELEX:52020PC0571&from=EN [dostęp: 2018].
  • 135. Kosova L.V. (1979). [Toxicity of nickel sulfate]. Gig. Tr. Prof. Zabol. 6, 48–49.
  • 136. Kręcisz B., Chomiczewska D., Pałczyński C. i in. (2012a). Contact allergy to metals in adolescents: nickel release from metal accessories 7 years after the implementation of the EU Nickel Directive in Poland. Contact Dermatitis 67, 270–276.
  • 137. Kręcisz B., Kieć-Świerczyńska M., Piasecka-Zelga J. i in. (2012b). Tissue reaction to the nickel implants in the guinea pigs. Int. J. Occup. Med. Environ. Health 25, 251–257.
  • 138. Kucharin G.M. (1970). [Damage to the nose and nasal sinuses in workers in an electrolytic nickel refining plant]. Gig. Tr. Prof. Zabol. 14, 38–40.
  • 139. Kurta D.L., Dean B.S., Krenzelok E.P. (1993). Acute nickel carbonyl poisoning. Am. J. Emerg. Med. 11, 64–66.
  • 140. Kusaka Y., Nakano Y., Shirakawa T. i in. (1991). Lymphocyte transformation test with nickel in hard metal asthma: another sensitizing component of hard metal. Ind. Health 29, 153–160.
  • 141. Lee Y.-W., Klein C.B., Kargacin B. i in. (1995). Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol. Cell. Biol. 15, 2547–2557.
  • 142. Li S.J., Nakagawa A., Tsukihara T. (2004). Ni2+ binds to active site of hen egg-white lysozyme and quenches fluorescence of Trp62 and Trp108. Biochem. Biophys. Res. Commun. 324(2), 529–533.
  • 143. Lidén C. (1994). Occupational contact dermatitis due to nickel allergy. Sci. Total Environ. 148(2–3), 283–285.
  • 144. Lidén C., Röndell E., Skare L. i in. (1998). Nickel release from tools on the Swedish market. Contact Dermatitis 39(3), 127–131.
  • 145. Lin X., Sugiyama M., Costa M. (1991). Differences in the effect of vitamin E on nickel sulfide or nickel chloride-induced of chromosomal aberrations in mammalian cells. Mutat. Res. 260, 159–164.
  • 146. Linauskienė K., Malinauskienė L., Blažienė A. (2017). Time trends of contact allergy to the European baseline series in Lithuania. Contact Dermatitis 76, 350–356.
  • 147. Lu C.C., Matsumoto N., Iijima S. (1981). Placental transfer and body distribution of nickel chloride in pregnant mice. Toxicol. Appl. Pharmacol. 59(3), 409–413.
  • 148. Maenza R.M., Pradhan A.M., Sunderman F.W. Jr. (1971). Rapid induction of sarcomas in rats by combination of nickel sulfide and 3,4-benzpyrene. Cancer Res. 31, 2067–2071.
  • 149. Magnus K., Andersen A., Høgetveit A.C. (1982). Cancer of respiratory organs among workers at a nickel refinery in Norway. Int. J. Cancer 30(6), 681–685.
  • 150. Malo J.L., Cartier A., Doepner M. i in. (1982). Occupational asthma caused by nickel sulfate. J. Allergy Clin. Immunol. 69, 55–59.
  • 151. Mastromatteo E. (1986). Nickel. Am. Ind. Hyg. Assoc. J. 47, 589–601.
  • 152. Mathur A.K., Datta K.K., Tandon K.S. i in. (1977). Effect of nickel sulphate on male rats. Bull. Environ. Contam. Toxicol. 17, 241–248.
  • 153. Mathur A.K., Dikshith T.S.S., Lal M.M. i in. (1978). Distribution of nickel and cytogenetic changes in poisoned rats. Toxicology 10, 105–113.
  • 154. Mathur A.K., Gupta B.N. (1994). Dermal toxicity of nickel and chromium in guinea pigs. Vet. Hum. Toxicol. 36(2), 131–132.
  • 155. Mayer C., Klein R.G., Wesch H. i in. (1998). Nickel subsulfide is genotoxic in vitro but shows no mutagenic potential In respiratory tract tissues of BigBlue rats and Muta Mouse mice in vivo after inhalation. Mutat. Res. 420, 85–98.
  • 156. Meding B., Barregård L., Marcus K. (1994). Hand eczema in car mechanics. Contact Dermatitis 30(3), 129–134.
  • 157. Menné T., Borgan O., Green A. (1982). Nickel allergy and hand dermatitis in a stratified sample of the Danish female population: an epidemiologic study including a statistic appendix. Acta Derm. Venerol. 62, 35–41.
  • 158. Menné T., Brandup F., Thestrup-Pedersen K. i in. (1987). Patch test reactivity to nickel alloys. Contact Dermatitis 16(5), 255–259.
  • 159. Menné T., Calvin G. (1993). Concentration threshold of nonoccluded nickel exposure in nickel-sensitive individuals and controls with and without surfactant. Contact Dermatitis 29, 180–184.
  • 160. Mohanty P.K. (1987). Cytotoxic effect of nickel chloride on the somatic chromosomes of Swiss albino mice mus musculus. Curr. Sci. 56, 1154–1157.
  • 161. Morimoto Y., Nambu Z., Tanaka I. i in. (1995). Effects of nickel oxide on the production of tumor necrosis factor by alveolar macrophages of rats. Biol. Trace Elem. Res. 48(3), 287–296.
  • 162. Morita H., Umeda M., Ogawa H.I. (1991). Mutagenicity of various chemicals including nickel and cobalt compounds in mouse FM3A cells. Mutat. Res. 261, 131–137.
  • 163. Morita T., Asano N., Awogi T. i in. (1997). Evaluation of the rodent micronucleus assay in the screening of IARC carcinogens (Groups 1, 2A and 2B): the summary report of the 6th collaborative study by CSGMT/JEMS-MMS. Mutat. Res. 389, 3–122.
  • 164. Mortz C.G., Bindslev-Jensen C., Andersen K.E. (2013). Nickel allergy from adolescence to adulthood in the TOACS cohort. Contact Dermatitis 68, 348–356.
  • 165. Muhle H., Bellmann B., Takenaka S. i in. (1990). Chronic effects of intratracheally instilled nickel-containing particles in hamsters. [W:] Nickel and human health: current perspectives. [Red.] E. Nieboer, J.O. Nriagu. John Wiley, New York.
  • 166. Nadeenko V.G., Lenchenko V.G., Arkhipenko T.A. i in. (1979). [Embryotoxic effect of nickel entering the body via drinking water]. Gig. Sanit. 6, 86–88.
  • 167. Nicklin S., Nielsen G.D. (1994). Nickel and the immune system: current concepts. [W:] Nickel and Human Health. [Red.] E. Nieboer, J.O. Nriagu. John Wiley and Sons, New York, NY. 239–259.
  • 168. Nieboer E., Evans S.L., Dolovich J. (1984). Occupational asthma from nickel sensitivity: II. Factors influencing the interaction of Ni2+, HSA, and serum antibodies with nickel related specificity. Br. J. Ind. Med. 41, 56–63.
  • 169. Nielsen G.D., Rohold A.E., Andersen K.E. (1992). Nickel contact sensitivity in the guinea pig: an efficient open application test method. Acta Derm. Venereol. 72, 45–48.
  • 170. Norseth T. (1986). Nickel. [W:] Handbook on the toxicology of metals. [Red.] L. Friberg, G.F. Nordberg, V. Vouk. Vol. 2, 2nd edition. Elsevier, Amsterdam, 462–481.
  • 171. Novey H.S., Habib M., Wells I.D. (1983). Asthma and IgE antibodies induced by chromium and nickel salts. J. Allergy Clin. Immunol. 72(4), 407–412.
  • 172. NTP, National Toxicology Program (1996a). Toxicology and carcinogenesis studies of nickel oxide in F344/N rats and B6C3F1 mice. Technical report series No. 451. US Department of Health and Human Services, Washington, DC, USA.
  • 173. NTP, National Toxicology Program (1996b). Toxicology and carcinogenesis studies of nickel subsulfide in F344/N rats and B6C3F1 mice. Technical report series No. 453. US Department of Health and Human Services, Washington, DC, USA.
  • 174. NTP, National Toxicology Program (1996c). Toxicology and carcinogenesis studies of nickel sulfate hexahydrate in F344/N rats and B6C3F1 mice. Technical report series No. 454. US Department of Health and Human Services, Washington, DC, USA.
  • 175. Obone E., Chakrabarti S.K., Bai C. i in. (1999). Toxicity and bioaccumulation of nickel sulfate in Sprague-Dawley rats following 13 weeks of subchronic exposure. J. Toxicol. Environ. Health A 57, 379–401.
  • 176. Oller A.R., Costa M., Oberdörster G. (1997). Carcinogenicity assessment of selected nickel compounds. Toxicol. Appl. Pharmacol. 143, 152–166.
  • 177. Oller A.R., Erexson G. (2007). Lack of micronuclei formation in bone marrow of rats after repeated oral exposure to nickel sulfate hexahydrate. Mutat. Res. 626, 102–110.
  • 178. Oller A.R., Kirkpatrick D.T., Radovsky A. i in. (2008). Inhalation carcinogenicity study with nickel metal powder in Wistar rats. Toxicol. Appl. Pharmacol. 233, 262–275.
  • 179. Oller A.R., Capellini D., Henderson R. i in. (2009). Comparison of nickel release in solutions used for the identification of water-soluble nickel exposures and in synthetic lung fluids. J. Environ. Monit. 11, 823–829.
  • 180. Oller A.R., Oberdörster G. (2010). Incorporation of particle size differences between animal studies and human workplace aerosols for deriving exposure limit values. Regul. Toxicol. Pharmacol. 57, 181–194.
  • 181. Onkelinx C., Becker J., Sunderman F.W. Jr. (1973). Compartmental analysis of the metabolism of 63Ni(II) in rats and rabbits. Res. Commun. Chem. Pathol. Pharmacol. 6(2), 663–676.
  • 182. Ottolenghi A.D., Haseman J.K., Payne W.W. i in. (1974). Inhalation studies of nickel sulfide in pulmonary carcinogenesis of rats. J. Natl. Cancer Inst. 54, 1165–1172.
  • 183. Pandey R., Kumar R., Singh S.P. i in. (1999). Male reproductive effect of nickel sulphate in mice. BioMetals 12(4), 339–346.
  • 184. Pandey R., Srivastava S.P. (2000). Spermatotoxic effects of nickel in mice. Bull. Environ. Contam. Toxicol. 64(2), 161– 167.
  • 185. Pang D., Burges D.C.L., Sorahan T. (1996). Mortality study of nickel platers with special reference to cancers of the stomach and lung, 1945–93. Occup. Environ. Med. 53, 714–717.
  • 186. Patriarca M., Lyon T.D., Fell G.S. (1997). Nickel metabolism in humans investigated with an oral stable isotope. Am. J. Clin. Nutr. 66(3), 616–621.
  • 187. Peltonen L. (1979). Nickel sensitivity in the general population. Contact Dermatitis 5(1), 27–32.
  • 188. Peto J. (1988). The international nickel speciation research project. [W:] 4th International Conference on Nickel Metabolism and Toxicology: abstracts. Espoo, Finland, 5-9 September 1988, Helsinki, Institute of Occupational Health, 50.
  • 189. PIG, Państwowy Instytut Geologiczny (2010). Kierunki polskiego importu i eksportu niklu (ogółem), http://www.pgi. gov.pl/surowce_mineralne/nikiel.htm [dostęp: 2018].
  • 190. Pott F., Ziem U., Reiffer F.-J. i in. (1987). Carcinogenicity studies on fibres, metal compounds, and some other dusts in rats. Exp. Pathol. (Jena) 32, 129–152.
  • 191. Pott F., Rippe R.M., Roller M. i in. (1990). Vergleichende Untersuchungen über die Kanzerogenität verschiedener Nickelverbindungen und Nickellegierungen [Comparative investigations into the carcinogenicity of various nickel compounds and nickel alloys]. Wirtschaftsverlag NW, Bremerhaven.
  • 192. Pott F., Rippe R.M., Roller M. i in. (1992). Carcinogenicity of nickel compounds and nickel alloys in rats by intraperitoneal injection. [W:] Nickel and human health: current perspectives. [Red.] E. Nieboer, J.O. Nriagu. John Wiley, New York.
  • 193. Raithel H.J. (1987). Forschungsbericht Nickel [Research report on nickel]. Schriftenreihe des Hauptverbandes der gewerblichen Berufsgenossenschaften e. V., Sankt Augustin.
  • 194. Rendall R.E.G., Phillips J.I., Renton K.A. (1994). Death following exposure to fine particulate nickel from a metal arc process. Ann. Occup. Hyg. 38(6), 921–930.
  • 195. Rezuke W.N., Knight J.A., Sunderman F.W. Jr (1987). References values for nickel concentrations in human tissues and bile. Am. J. Ind. Med. 11, 419–426,
  • 196. Rodriguez R.E., Kasprzak K.S. (1989). Antagonists to metal carcinogens. J. Am. Coll. Toxicol. 8, 1265–1269.
  • 197. Rohold A.E., Nielsen G.D., Andersen K.E. (1991). Nickelsulphate-induced contact dermatitis in the guinea pig maximization test: a dose-response study. Contact Dermatitis 24(1), 35–39.
  • 198. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1272/2008 z dnia 16 grudnia 2008 r. w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin, zmieniające i uchylające dyrektywy 67/648/EWG i 1999/45/WE oraz zmieniające rozporządzenie WE nr 1907/2006. Dz. Urz. UE L 353 z 31.12.2008. Z uwzględnieniem 1 ATP. Dz. Urz. UE L 235 z 5.09.2009 r.
  • 199. RTECS, Registry of Toxic Effects of Chemical Substances (2018). Komputerowa baza danych.
  • 200. Rui F., Bovenzi M., Prodi A. i in. (2012a). Concurrent sensitization to metals and occupation. Contact Dermatitis 67, 359–366.
  • 201. Rui F., Bovenzi M., Prodi A. i in. (2012b). Nickel, chromium and cobalt sensitization in a patch test population in north‐ eastern Italy (1996-2010). Contact Dermatitis 68, 23–31.
  • 202. Ryan C.A., Cruse L.W., Skinner R.A. i in. (2002). Examination of a vehicle for use with water soluble materials in the murine local lymph node assay. Food Chem. Toxicol. 40(11), 1719–1725.
  • 203. Salnikow K., Su W., Blagosklonny M.V. i in. (2000). Carcinogenic metals induce hypoxia-inducible factorstimulated transcription by reactive oxygen sepciesindependent mechanism. Cancer Res. 60(13), 3375–3378.
  • 204. Santucci B., Manna F., Cannistraci C. i in. (1994). Serum and urine concentrations in nickel-sensitive patients after prolonged oral administration. Contact Dermatitis 30, 97–101.
  • 205. Scanlon S.E., Scanlon C.D., Hegan D.C. i in. (2017). Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis 38(6), 627–637.
  • 206. Schnuch A., Uter W., Geier J. i in. (2002). Epidemiology of contact allergy: an estimation of morbidity employing the clinical epidemiology and drug-utilization research (CEDUR) approach. Contact Dermatitis 47(1), 32–39.
  • 207. Schwerdtle T., Seidel A., Hartwig A. (2002). Effect of soluble and particulate nickel compounds on the formation and repair of stable benzo[a]pyrene DNA adducts in human lung cells. Carcinogenesis 23, 47–53.
  • 208. SCOEL, Scientific Committee on Occupational Exposure Limits (2011). Recommendation from the Scientific Committee on Occupational Exposure Limits for nickel and inorganic nickel compounds. SCOEL/SUM/85. European Commission, June 2011.
  • 209. Seidenberg J.M., Anderson D.G., Becker R.A. (1986). Validation of an in vivo developmental toxicity screen in the mouse. Teratog. Carcinog. Mutagen. 6, 361–374.
  • 210. Seilkop S.K. (1997). [Statement on the study of Andersen et al. (1996) for NiPERA (Nickel Producers Environmental Research Association)], [cyt. za: SCOEL 2011].
  • 211. Senft V., Losan F., Tucek M. (1992). Cytogenetic analysis of chromosomal aberrations of peripheral lymphocytes in workers occupationally exposed to nickel. Mutat. Res. 279, 171–179.
  • 212. Shi Z. (1994). Nickel carbonyl: Toxicity and human health. Sci. Total Environ. 148(2–3), 293–298.
  • 213. Siller G.M., Seymour G.J. (1994). Kinetics and specificity of nickel hypersensitivity in the murine model. Australas. J. Dermatol. 35(2), 77–81.
  • 214. Smith M.K., George E.L., Stober J.A. i in. (1993). Perinatal toxicity associated with nickel chloride exposure. Environ. Res. 61, 200–211
  • 215. Sobti R.C., Gill R.K. (1989). Incidence of micronuclei and abnormalities in the head of spermatozoa caused by the salts of a heavy metal, nickel. Cytologia 54, 249–254.
  • 216. Solomons N.W, Viteri E., Shuler T.R. i in. (1982) Bioavailability of nickel in man: effects of foods and chemically-defined dietary constituents on the absorption of inorganic nickel. J. Nutr. 112, 39–50.
  • 217. Spiegelberg T., Kördel W., Hochrainer D. (1984). Effect of NiO inhalation on alveolar macrophages and the humoral immune system of rats. Ecotoxicol. Environ. Saf. 8, 516–525.
  • 218. Springborn Laboratories (2000a). A one-generation reproduction range-finding study in rats with nickel sulfate hexahydrate. Spencerville, OH: Springborn Laboratories, Inc. SLI Study No. 3472.3.
  • 219. Springborn Laboratories (2000b). An oral (gavage) twogeneration reproduction toxicity study in Sprague-Dawley rats with nickel sulfate hexahydrate. Final Report. Volume 1 of 3. Spencerville, OH: Springborn Laboratories, Inc. SLI Study No. 3472.4.
  • 220. Springborn Laboratories (2002). A range-finding 90-day oral (gavage) toxicity study in Fischer 344 rats with nickel sulfate hexahydrate. Spencerville, OH: Springborn Laboratories, Inc. SLI Study No. 3472.6.
  • 221. Suh M., Troese M.J., Hall D.A. i in. (2014). Evaluation of electric arc furnace‐processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact. J. Appl. Toxicol. 34, 1418–1425.
  • 222. Sumino K., Hayakawa K., Shibata T. i in. (1975). Heavy metals in normal Japanese tissues: amounts of 15 heavy metals in 30 subjects. Arch. Environ. Health 30, 487–494.
  • 223. Sunderman F.W. (1970). Nickel poisoning. [W:] Laboratory diagnosis of diseases caused by toxic agents. [Red.] F.W. Sunderman, F.W. Sunderman Jr. Warren H. Green, St. Louis, Missouri, 387–397.
  • 224. Sunderman F.W. Jr (1984). Carcinogenicity of nickel compounds in animals. [W:] Nickel in the human environment. [Red.] F.W. Sunderman Jr. IARC Scientific Publications No. 53. International Agency for Research on Cancer, Lyon, 127–141.
  • 225. Sunderman F.W. Jr (1992). Hazards from exposure to nickel: a historical account. [W:] Nickel and human health. [Red.] E. Nieboer, J.O. Nriagu. John Wiley, New York, 1–20.
  • 226. Sunderman F.W. Jr (1993). Biological monitoring of nickel in humans. Scand. J. Work Environ. Health 19(Suppl. 1), 34–38.
  • 227. Sunderman F.W. Jr., Kasprzak K.S., Lau T.J. i in. (1976). Effects of manganese on carcinogenicity and metabolism of nickel subsulfide. Cancer Res. 36, 1790–1800.
  • 228. Sunderman F.W. Jr, Horak E. (1982). Biochemical indices of nephoroxicity, exemplified by studies of nickel nephropathy. [W:] Organ-directed toxicity: chemical indices and mechanisms. [Red.] S.S. Brown, D.S. Davies. Oxford, Pergamon Press. 52–64
  • 229. Sunderman F.W. Jr, Aitio A., Morgan L.G. i in. (1986). Biological monitoring of nickel. Toxicol. Ind. Health 2, 17–78.
  • 230. Sunderman F.W. Jr, Dingle B., Hopfer S.M. i in. (1988). Acute nickel toxicity in electroplating workers who accidently ingested a solution of nickel sulfate and nickel chloride. Am. J. Ind. Med. 14, 257–266.
  • 231. Sunderman F.W. Jr, Hopfer S.M., Sweeney K.C. i in. (1989). Nickel absorption and kinetics in human volunteers. Proc. Soc. Exp. Biol. Med. 191(5), 5–11.
  • 232. Sushenko O.V., Rafikova K.E. (1972). [Problems of occupational health in hydrometallurgy of copper, nickel and cobalt based on sulfide ores]. Gig. Tr. Prof. Zabol. 16, 42–45. S
  • 233. venes K.B., Andersen I. (1998). Distribution of nickel in lungs from former nickel workers. Int. Arch. Occup. Environ. Health 71, 424–428.
  • 234. Szakmary E., Ungváry G., Naray M. i in. (1996). Offspring damaging effect of nickel in rat, mouse and rabbit. Central Europ. J. Occup. Environ. Med. 2(3), 277–287.
  • 235. Śmiałowicz R.J. (1984) The effect of nickel and manganese on natural killer activity. [W:] Progress in nickel toxicology. [Red.] S.S. Brown, F.W. Sunderman Jr. Blackwell, Cambridge, 161–164
  • 236. Takenaka S., Hochrainer D., Oldiges H. (1985). Alveolar proteinosis induced in rats by long-term inhalation of nickel oxide. [W:] Progress in nickel toxicology. [Red.] S.S. Brown, F.W. Sunderman Jr. Proceedings of the 3rd International Congress on Nickel Metabolism and Toxicology, Oxford, UK. Blackwell, 89–92.
  • 237. Tanaka I., Ishimatsu S., Matsuno K. i in. (1985). Biological half time of deposited nickel oxide aerosol in rat lung by inhalation. Biol. Trace Elem. Res. 8(3), 203–210.
  • 238. Tanaka I., Horie A., Haratake J. i in. (1988). Lung burden of green nickel oxide aerosol and histopathological findings in rats after continuous inhalation. Biol. Trace Elem. Res. 16(1), 19–26.
  • 239. Tanko Z., Diepgen T.L., Weisshaar E. (2008). Is nickel allergy an occupational disease? discussion of the occupational relevance of a type IV allergy to nickel (II) sulfate using case reports. J. Dtsch. Dermatol. Ges. 6, 346–349.
  • 240. Thtarskaya A.A. (1965). [Occupational cancer of the upper respiratory tract in the nickel-refining industry]. Gig. Tr prof Zabol. 9, 22–25.
  • 241. Thyssen J., Linneberg A., Engkilde K. i in. (2012). Contact sensitization to common haptens is associated with atopic dermatitis: new insight. Br. J. Dermatol. 166, 1255–1261.
  • 242. Torjussen W., Andersen I. (1979). Nickel concentrations in nasal mucosa, plasma and urine in active and retired nickel workers. Ann. Clin. Lab. Sci. 9, 289–298.
  • 243. Toya T., Serita F., Sawatari K. i in. (1997). Lung lesions induced by intratracheal instillation of nickel fumes and nickeloxide powder in rats. Ind. Health 35, 69–77.
  • 244. Turk J.L., Parker D. (1977). Sensitization with Cr, Ni and Zr salts and allergic type granuloma formation in the guinea pig. J. Invest. Dermatol. 68(6), 341–345.
  • 245. Uter W., Pfahlberg A., Gefeller O. i in. (2003). Risk factors for contact allergy to nickel – results of a multifactorial analysis. Contact Dermatitis 48(1), 33–38.
  • 246. Uter W., Johansen J.D., Orton D.I. i in. (2005). Clinical update on contact allergy. Curr. Opin. Allergy Clin. Immunol. 5(5), 429–436.
  • 247. Valentine R., Fisher G.L. (1984). Pulmonary clearance of intratracheally administered 63Ni3S2 in strain A/J mice. Environ. Res. 34, 328–334.
  • 287. Vennegaard M.T., Dyring‐Andersen B., Skov L. i in. (2014). Epicutaneous exposure to nickel induces nickel allergy in mice via a MyD88‐dependent and interleukin‐1‐dependent pathway. Contact Dermatitis 71, 224–232.
  • 249. Vuopala U., Huhti E., Takkunen J. i in. (1970). Nickel carbonyl poisoning: report of 25 cases. Ann. Clin. Res. 2, 214–222.
  • 250. Vyskocil A., Senft V., Viau C. i in. (1994a). Biochemical renal changes in workers exposed to soluble nickel compounds. Hum. Exp. Toxicol. 13(4), 257–261.
  • 251. Vyskocil A., Viau C., Cízková M. (1994b). Chronic nephrotoxicity of soluble nickel in rats. Hum. Exp. Toxicol. 13, 689–693. Wahlberg J.E. (1976). Sensitization and testing of guinea pigs with nickel sulfate. Dermatologica 152(6), 321–330.
  • 252. Waksvik H., Boysen M. (1982). Cytogenetic analyses of lymphocytes from workers in a nickel refinery. Mutat. Res. 103, 185–190.
  • 253. Waksvik H., Boysen M., Høgetveit A.C. (1984). Increased incidence of chromosomal aberrations in peripheral lymphocytes of retired nickel workers. Carcinogenesis 5, 1525–1527.
  • 254. Watanabe C., Weiss B., Cox C. i in. (1990). Modification by nickel of instrumental thermoregulatory behavior in rats. Fundam. Appl. Toxicol. 14(3), 578–588.
  • 255. Webster J.D., Parker T.F., Alfrey A.C. i in. (1980). Acute nickel intoxication by dialysis. Ann. Intern. Med. 92, 631–633.
  • 256. Wehner A.P., Busch R.H., Olson R.J. i in. (1975). Chronic inhalation of nickel oxide and cigarette smoke by hamsters. Am. Ind. Hyg. Assoc. J. 36, 801–810.
  • 257. Weischer C.H., Kördel W., Hochrainer D. (1980). Effects of NiCl2 and NiO in Wistar rats after oral uptake and inhalation exposure respectively. Zentralbl. Bakteriol. Mikrobiol. Hyg. B. 171, 336–351.
  • 258. Whanger P.D. (1973). Effects of dietary nickel on enzyme activities and mineraI contents in rats. Toxicol. Appl. Pharmacol. 25, 323–331.
  • 259. Wnuk M., Szymczyk I., Szadkowska-Stańczyk I. i in. (2000). Nikiel i jego związki. Wytyczne szacowania ryzyka zdrowotnego dla czynników rakotwórczych, 10. IMP, Łódź, 37–85.
  • 260. Zhang J., Zhou Y., Wu Y-J. i in. (2013). Hyper-methylated miR-203 dysregulates ABL1 and contributes to the nickelinduced tumorigenesis. Toxicol. Lett. 223, 42–51.
  • 261. Zislin D.M., Ganyuskina S.M., Dubilina E.S. i in. (1969). [The residual volume of the lungs in complex assessment of the functional status of the respiratory system in initial and suspected pneumoconiosis]. Gig. Tr. Prof. Zabol. 13, 26–29.
  • 262. Zissu D., Cavelier C., De Ceaurriz J. (1987). Experimental sensitization of guinea-pigs to nickel and patch testing with metal samples. Food Chem. Toxicol. 25(1), 83–85.
  • 263. Zober A. (1981a). [Symptoms and findings at the bronchopulmonary system of electric arc welders: I. Communication: epidemiology]. Zentralbl. Bakteriol. Mikrobiol. Hyg. B 173, 92–119.
  • 264. Zober A. (1981b). [Symptoms and findings at the bronchopulmonary system of electric arc welders: II. Communication: pulmonary fibrosis]. Zentralbl. Bakteriol. Mikrobiol. Hyg. B 173, 120–148.
  • 265. Zober A. (1982). Possible dangers to the respiratory tract from welding fumes. Schweissen Schneiden 34, 77–81.
  • 266. Zoroddu M.A., Schinocca L., Kowalik-Jankowska T. i in. (2002). Molecular mechanisms in nickel carcinogenesis: modeling Ni (II) binding site in histone H4. Environ. Health Perspect. 110(Suppl. 5), 719–723.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbcda28e-2a7f-49bc-a211-3276c28c34c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.