PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Transparent AI-Driven Multiclass Decision Support System for Thyroid Risk Prediction Using Machine Learning and Deep Learning Approaches

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Early and accurate diagnosis of thyroid disorders is essential due to their prevalence and health impact. To enhance interpretability in clinical settings, we propose a comprehensive workflow for transparent thyroid disease prediction using a multiclass classification problem with five diagnostic categories. A dataset of 9172 samples with 31 features was used to train various machine and deep learning models. A dual-layered framework combining Feature Selection (ETC, MI, RFE) and Explainable AI (SHAP, LIME) improved performance and transparency. Gradient Boosting achieved the highest accuracy (0.97). SHAP explained global feature influence, while LIME clarified individual predictions. Our approach supports interpretable, reliable AI-based diagnostic tools for thyroid disorder classification.
Rocznik
Strony
473--509
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Complex Systems Engineering Laboratory (LISCO), Computer Science Department, Badji Mokhtar University, Annaba, Algeria
autor
  • Complex Systems Engineering Laboratory (LISCO), Computer Science Department, Badji Mokhtar University, Annaba, Algeria
Bibliografia
  • 1. Ahmad, W., Ahmad, A., Lu, C., A Novel Hybrid Decision Support System for Thyroid Disease Forecasting, Soft Computing, 22, 2018, 5377-5383.
  • 2. Aldughayfiq, B., Ashfaq, F., Jhanjhi, N. Z., Humayun, M., Explainable AI for Retinoblastoma Diagnosis: Interpreting Deep Learning Models with LIME and SHAP, Diagnostics, 13, 2023, 1932, https://doi.org/10.3390/diagnostics13111932.
  • 3. Allgaier, J., Mulansky, L., Draelos, R. L., Pryss, R., How Does the Model Make Predictions? A Systematic Literature Review on the Explainability Power of Machine Learning in Healthcare, Artificial Intelligence in Medicine, 143, 2023, 102616, https://doi.org/10.1016/j.artmed.2023.102616.
  • 4. Amin, A., Hasan, K., Zein-Sabatto, S., Chimba, D., Ahmed, I., Islam, T., An Explainable AI Framework for Artificial Intelligence of Medical Things, Proc. IEEE Globecom Workshops (GC Wkshps), 2023, 2097–2102.
  • 5. Chaganti, R., Rustam, F., De La Torre Díez, I., V. Mazon, J. L., Rodríguez, C. L., Ashraf, I., Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques, Cancers, 14, 2022.
  • 6. du Prel, J. B., Hommel, G., Röhrig, B., Blettner, M., Confidence Interval or P-Value? Part 4 of a Series on Evaluation of Scientific Publications, Deutsches Ärzteblatt International, 2009, https://doi.org/10.3238/arztebl.2009.0335.
  • 7. Ghosh, S. K., Khandoker, A. H., Investigation on Explainable Machine Learning Models to Predict Chronic Kidney Diseases, Scientific Reports, 14, 2024, 3687.
  • 8. Guler, H., Avcı, D., Ulaş, M., Omma, T., Performance Comparison of Machine Learning Models Powered by SHAP and LIME Based Explainability Techniques on Diabetes Dataset, SSRN, 2024, https://ssrn.com/abstract=4713039.
  • 9. Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini, F., Factual and Counterfactual Explanations for Black Box Decision Making, IEEE Intelligent Systems, 34, 6, 2019, 14-23.
  • 10. Hakkoum, H., Idri, A., Abnane, I., Assessing and Comparing Interpretability Techniques for Artificial Neural Networks in Breast Cancer Classification, Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2021, https://doi.org/10.1080/21681163.2021.1901784.
  • 11. Hu, Y., Sokolova, M., Explainable Multi-class Classification of the CAMH COVID-19 Mental Health Data, arXiv preprint, 2021, arXiv:2113.13430.
  • 12. Junkang, A., Zhang, Y., Joe, I., Specific-Input LIME Explanations for Tabular Data Based on Deep Learning Models, Applied Sciences, 13, 15, 2023, 8782.
  • 13. Kaggle, Thyroid Disease Dataset, https://www.kaggle.com/datasets/emmanuelfwerr/thyroid-diseasedata.
  • 14. Mulwa, M. M., Mwangi, R. W., Mindila, A., GMM-LIME Explainable Machine Learning Model for Interpreting Sensor-Based Human Gait, Engineering Reports, 2024.
  • 15. Ouartani, S., Taleb, N., Decision Support System for Thyroid Disease Prediction Using Decision Tree Algorithm and Ontology, Artificial Intelligence Theory and Applications (AITA), 2024.
  • 16. Rahman, M., Ali, M., Mahim, M., Miah, S. M., Sipon, M., Enhancing Lung Abnormalities Detection and Classification Using a Deep CNN and GRU with Explainable AI, Machine Learning with Applications, 14, 2023, 100492, https://doi.org/10.1016/j.mlwa.2023.100492.
  • 17. Rawte, V., Royl, B., V. L., Thyroid Disease Diagnosis using Ontology-based Expert System, International Journal of Engineering Research Technology (IJERT), 4, 6, 2015.
  • 18. Settouti, N., Saidi, M., Preliminary Analysis of Explainable Machine Learning Methods for Multiple Myeloma Chemotherapy Treatment Recognition, Evolutionary Intelligence, 17, 2024, 513–533.
  • 19. Shiuh, T. L., Khai, W. K., Xin, Y. C., Wai, C. Y., Prediction of Thyroid Disease Using Machine Learning Approaches and Featurewiz Selection, JTEC, 15, 3, 2023, 9-16.
  • 20. Siddhartha, K., Abhishek, A., Gyanendra, S., Developing an Explainable Machine Learning-Based Thyroid Disease Prediction Model, International Journal of Business Analytics (IJBAN), 9, 3, 2022, 1–18.
  • 21. Sun, Q., Akman, A., Schuller, B. W., Explainable Artificial Intelligence for Medical Applications: A Review, arXiv preprint, 2024, arXiv:2412.01829.
  • 22. Tang, J., Alelyani, S., Liu, H., Feature Selection for Classification: A Review, in: C. C. Aggarwal (Ed.), Data Classification: Algorithms and Applications, Chapman and Hall/CRC, 2014, 37–64.
  • 23. Zacharias, J., von Zahn, M., Chen, J., Designing a Feature Selection Method Based on Explainable Artificial Intelligence, Electronic Markets, 2022, https://doi.org/10.1007/s12525-022-00608-1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbca7468-ceaa-45ed-9b37-7d7b56f0dd64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.