Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Effects of FeNi3/SiO2/GO nanoparticles on the mechanical and durability properties of concrete
Języki publikacji
Abstrakty
Najnowsze badania wskazują na to, że nanomateriały mogą częściowo zastąpić cement w kompozytach cementowych. Ostatnio zaproponowanym zamiennikiem cementu w betonie są nanokompozyty tlenku grafenu. W związku z tym, w tym badaniu laboratoryjnym, zsyntetyzowano nanocząstki FeNi3/SiO2/GO [NFSG] oraz nanocząstki SiO2 [NS] i potwierdzono za pomocą analiz FTIR, SEM i TEM ich właściwości. Następnie zastąpiono nimi częściowo cement w ilości 1, 2 i 3% jego masy i określono ich wpływ na właściwości mechaniczne i trwałość próbek w wieku 7, 28 i 90 dni. Wyniki sugerują, że składy o najlepszych właściwościach mechanicznych przyniosły najlepsze rezultaty. W betonach tych wprowadzono 2% NFSG i 2% NS jako zamienniki cementu. Po 28 dniach beton zawierający NFSG zwiększył wytrzymałość na ściskanie o 15% i wytrzymałość na rozciąganie przy rozłupywaniu o 13%. Widma FTIR wykazały, że próbka zawierająca 2% NFSG wytworzyła więcej żelu C-S-H, poprawiając mikrostrukturę betonu, a tym samym jego właściwości.
Recent research in the construction industry supports the idea that nanomaterials can partially replace cement. A recently suggested material as a suitable substitute for cement in concrete is graphene oxide nanocomposite. As a result, in this laboratory study, FeNi3/SiO2/GO nanoparticles [NFSG] and SiO2 nanoparticles [NS] partially replace cement by 1, 2, and 3% by mass after their synthesis and confirmation by FT-IR, SEM and TEM analyses and their impact on the mechanical and durability characteristics of the specimens at ages 7, 28, and 90 days were examined. The findings imply that the designs with the highest mechanical properties tests produced the best results. These designs used 2% of NFSG and 2% of NS substituting cement. After 28 days, NFSG-containing concrete increased compressive strength by 15% and splitting tensile strength by 13%. FTIR spectra demonstrated that specimen containing 2% of NFSG produced more C-S-H [calcium silicate hydrate] gel, improving the microstructure of concrete and subsequently its properties.
Wydawca
Czasopismo
Rocznik
Tom
Strony
255--267
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
autor
- Department of Civil Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
autor
- Department of Civil Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Department of Civil Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
autor
- Advanced Research Center for Chemistry, Biochemistry & Nanomaterial; Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
autor
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
Bibliografia
- 1. R. Pierrehumbert, There is no Plan B for dealing with the climate crisis. Bull. At. Sci., 75, 215-221 (2019). https://doi.org/10.1080/00963402.2019.1654255
- 2. M.J. Hanus, A.T. Harris, Nanotechnology innovations for the construction industry. Prog. Mater. Sci. 58, 1056-1102 (2013). https://doi.org/10.1016/j.pmatsci.2013.04.001.
- 3. C. Wang, Z. Jia, S. He, J. Zhou, S. Zhang, M. Tian, B. Wang, G. Wu, Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation. J. Mater. Sci. Technol. 108, 236-243(2022). https://doi.org/10.1016/j.jmst.2021.07.049.
- 4. M. Saliani, A. Honarbakhsh, R. Zhiani, S.M. Movahedifar, A. Motavalizadehkakhky, Effects of GO/Al2O3 and Al2O3 Nanoparticles on Concrete Durability against High Temperature, Freeze-Thaw Cycles, and Acidic Environments. Adv. Civ. Eng. 1-12 (2021). https://doi.org/10.1155/2021/4555802
- 5. S.M. Ahmadi, A. Honarbakhsh, R. Zhiani, D. Tavakoli, Effect of KCC-1/Ag Nanoparticles on the Mechanical Properties of Concrete. Int. J. Eng. 35, 1388-13987 (2022). https://doi.org/10.5829/IJE.2022.35.07A.17
- 6. Y.F. Fan, S.Y. Zhang, Q. Wang, et al. Effects of nano-kaolinite clay on the freeze-thaw resistance of concrete. Cem. Concr. Compos. 62, 1-12 (2015). https://doi.org/10.1016/j.cemconcomp.2015.05.001.
- 7. J.I. Tobón, J. Payá, O.J. Restrepo, Study of durability of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mater. 80, 92-97 (2015). https://doi.org/10.1016/j.conbuildmat.2014.12.074.
- 8. M. Saliani, A. Honarbakhsh, R. Zhiani, S.M. Movahedifar, A. Motavalizadehkakhky, Investigating the mechanical properties and durability indices of concrete containing Fe3O4/SiO2/GO and GO nanoparticles. Cem. Wapno Beton, 26(1) 67-82 (2021). https://doi.org/10.32047/CWB.2021.26.1.7
- 9. S. Muthusamy, S. Wang, D.D.L. Chung, Unprecedented vibration damping with high values of loss modulus and loss tangent, exhibited by cement-matrix graphite network composite. Carbon 48, 1457-1464(2010). https://doi.org/10.1016/j.carbon.2009.12.040.
- 10. T. M. D. R. Martins, F. M. A. S. P. Torgal, S. Miraldo, J. L. Aguiar, C. M. G. Jesus, An experimental investigation on nano-TiO2 and fly ash based high performance concrete. Indian Concr. J. (2016). https://repositorium.sdum.uminho.pt/handle/1822/40049
- 11. Y. Cao, J. Zhang, J. Feng, P. Wu, Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 5, 5920-5927 (2011). https://doi.org/10.1021/nn201717a.
- 12. A. Kooshkaki, H. Eskandari-Naddaf, Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling. Constr. Build. Mater. 212, 176-191(2019). https://doi.org/10.1016/j.conbuildmat.2019.03.243.
- 13. Q. Wang, J. Wang, C.X. Lu, B.W. Liu, K. Zhang, C.Z. Li, Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Res. Carbon Mater. 30, 349-356(2015). https://doi.org/10.1016/S1872-5805(15)60194-9.
- 14. F. Zahiri, H. Eskandari-Naddaf, Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene fibers using extreme vertices mixture design. FSCE. 13, 821-830 (2019). https://doi.org/10.1007/s11709-019-0518-6.
- 15. E. Sadrossadat, H. Basarir, An Evolutionary-Based Prediction Model of the 28-Day Compressive Strength of High-Performance Concrete Containing Cementitious Materials. Adv. Civ. Eng. Mater. 8, 484-497(2019). https://doi.org/10.1520/ACEM20190016.
- 16. M.I. Abdul Aleem, P.D. Arumairaj, Geopolymer concrete: A review. Eng. Techn. 1, 118-122 (2012). https://doi.org/10.7323/ijeset/v1_i2_14.
- 17. R. Cheraghalizadeh, T. Akcaoglu, Properties of self-compacting concrete containing olive waste ash, Cem. Wapno Beton. 25(3), 178-187 (2020). https://doi.org/10.32047/CWB.2020.25.3.2.
- 18. A. Bazrafkan, A. Habibi, A. Sayari, Experimental study on mechanical properties of concrete with marble dust. Cem. Wapno Beton 25(4), 316-329 (2020). https://doi.org/10.32047/CWB.2020.25.4.6
- 19. S.A. Emamian, H. Eskandari-Naddaf, Genetic programming based formulation for compressive and flexural strength of cement mortar containing nano and micro silica after freeze and thaw cycles. Constr. Build. Mater. 241, 118027 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118027.
- 20. A.G. Alex, A. Kedir, T.G. Tewele, Review on effects of graphene oxide on mechanical and microstructure of cement-based materials. Constr. Build. Mater. 360, 129609 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129609
- 21. A. Kedir, M. Gamachu, A.G. Alex, Cement-Based Graphene Oxide Composites: A Review on Their Mechanical and Microstructure Properties. J. Nanomater. 2023,1-12 (2023). https://doi.org/10.1155/2023/6741000
- 22. S.H. Lv, T. Sun, J. Liu, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness, Cryst. Eng. Comm. J. 16, 8508-8516 (2014). https://doi.org/10.1039/C4CE00684D.
- 23. S.A. Emamian, H. Eskandari-Naddaf, Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. Constr. Build. Mater. 218, 8-27 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.092.
- 24. M.M. Mokhtar, S.A. Abo-El-Enein, M.Y. Hassaan, M.S. Morsy, M.H. Khalil, Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement. Constr. Build. Mater. 138, 333-339 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.021.
- 25. P.A. Jose, A.G. Alex, T. Sagay, S. Murugan, Influence of Fe2O3 nanoparticles on the characteristics of waste marble powder mixed cement mortars. Int. J. Concr. Struct. Mater. 23 (2023). https://doi.org/10.1186/s40069-023-00583-7
- 26. M. Seifan, S. Mendoza, A. Berenjian, A Comparative Study on the Influence of Nano and Micro Particles on the Workability and Mechanical Properties of Mortar Supplemented with Fly Ash. Buildings. 11, 1-17 (2021). https://doi.org/10.3390/buildings11020060.
- 27. F. Silva, P. Arezes, P. Swuste, Risk management: Controlling occupational exposure to nanoparticles in construction. In Nanotechnology in Eco-efficient Construction. 755-784 (2019). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102641-0.00029-3
- 28. C. Buzea, I. Pacheco, Toxicity of nanoparticles. In Nanotechnology in Eco-efficient Construction. 705-754 (2019). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102641-0.00028-1
- 29. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339(1958). https://doi.org/10.1021/ja01539a017.
- 30. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, A. Allahresani, FeNi3/SiO2 magnetic nanocomposite as an efficient and recyclable heterogeneous fenton-like catalyst for the oxidation of metronidazole in neutral environments: Adsorption and degradation studies. Compos. B. 166, 328-340 (2019). https://doi.org/10.1016/j.compositesb.2018.11.112.
- 31. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. J. Cleaner Prod. 179, 42-54(2018). https://doi.org /10.1016/j.jclepro.2018.01.052.
- 32. M.A. Nasseri, S.M. Sadeghzadeh, A highly active FeNi3-SiO2 magnetic nanoparticles catalyst for the preparation of 4H-benzo[b]pyrans and Spirooxindoles under mild conditions. J. Iran. Chem. Soc. 10, 1047-1056 (2013). https://doi.org/10.1007/s13738-013-0243-3.
- 33. X. Ding, Y. Huang, M. Zong, Synthesis and microwave absorption enhancement property of core-shell FeNi3@SiO2-decorated reduced graphene oxide nanosheets. Mater. Lett. 157, 285-289 (2015). https://doi.org/10.1016/j.matlet.2015.05.130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbc68d9f-2cce-489f-8298-857bfe69816e