PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shallow Water Experiment of OFDM Underwater Acoustic Communications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The large variability of communication properties of underwater acoustic channels, and especially the strongly varying instantaneous conditions in shallow waters, is a challenge for the designers of underwater acoustic communication (UAC) systems. The use of phase modulated signals does not allow reliable data transmission through such a tough communication channel. However, orthogonal frequency-division multiplexing (OFDM), being a multi-carrier amplitude and phase modulation technique applied successfully in the latest standards of wireless communications, gives the chance of reliable communication with an acceptable error rate. This paper describes communication tests conducted with the use of a laboratory model of an OFDM data transmission system in a shallow water environment in Wdzydze Lake.
Rocznik
Strony
11--18
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Department of Sonar Systems, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Department of Sonar Systems, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Department of Sonar Systems, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Bradbeer R., Law E., Yeung E. (2003), Using multi-frequency modulation in a modem for the transmission of near realtime video in an underwater environment, Proceedings of 2003 IEEE International Conference on Consumer Electronics, ICCE 2003, pp. 360-361, Los Angeles, doi: 10.1109/ICCE.2003.1218974.
  • 2. Chitre M., Ong S. H., Potter J. (2005), Performance of coded OFDM in very shallow water channel and snapping shrimp noise, Proceedings of OCEANS 2005 MTS/IEEE, Washington, DC, 2005, Vol. 2, pp. 996-1001, doi: 10.1109/OCEANS.2005.1639884.
  • 3. Coatelan S., Glavieux A. (1995), Design and test of coding OFDM system on the shallow water acoustic channel, Challenges of Our Changing Global Environment. Conference Proceedings. OCEANS ’95 MTS/IEEE, Vol. 3, pp. 2065-2070, San Diego, California, USA, doi: 10.1109/OCEANS.1995.528896.
  • 4. ETSI TS 136 213, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures, 3GPP TS 36.213 version 13.0.0, Release 13. 3GPP.
  • 5. Frassati F., Lafon C., Laurent P., Passerieux J. (2005), Experimental Assessment of OFDM and DSSS modulations for use in littoral waters underwater acoustic communications, Proceedings of Europe Oceans 2005, Brest, France, 2005, Vol. 2, pp. 826-831, doi: 10.1109/OCEANSE.2005.1513163.
  • 6. Kochańska I., Nissen I., Marszal J. (2018), A method for testing the wide-sense stationary uncorrelated scattering assumption fulfillment for an underwater acoustic channel, The Journal of the Acoustical Society of America, 143 (2): EL116-EL120, doi: 10.1121/1.5023834.
  • 7. Kochańska I., Schmidt J., Rudnicki M. (2016), Underwater acoustic communications in time-varying dispersive channels, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (Eds), ACSIS, Vol. 8, pp. 467-474, Gdańsk, doi: 10.15439/2016F412.
  • 8. Nissen I. (2005), Pilot-based OFDM-systems for underwater communication applications, Proceedings of Conference on New Concepts for Harbour Protection, Littoral Security and Underwater Acoustic Communications, TICA 2005, Istanbul, https://ssrn.com/abstract=2188243.
  • 9. Qingfeng J., Ming C., Yuping L., Weizhi Z., Hongwei Y. (2014), Pseudo-noise preamble based joint frame and frequency synchronization algorithm in OFDM communication systems, Journal of Systems Engineering and Electronics, 25 (1): 1-9, doi: 10.1109/JSEE.2014.00001.
  • 10. Schmidt J. H. (2016), The development of an underwater telephone for digital communication purposes, Hydroacoustics, 19: 341-352.
  • 11. Schmidt J. H., Kochańska I., Schmidt A. M. (2017), Measurement of impulse response of shallow water communication channel by correlation method, Hydroacoustics, 20: 149-158.
  • 12. Sklar B. (1997), Rayleigh fading channels in mobile digital communication systems. I. Characterization, IEEE Communications Magazine, 35 (9): 136-146, doi: 10.1109/35.620535.
  • 13. Stojanovic M. (2006), Low complexity OFDM detector for underwater acoustic channels, Proceedings of IEEE OCEANS 2006, Boston, MA, doi: 10.1109/OCEANS.2006.307057.
  • 14. Tufvesson F., Faulkner M., Edfors O. (1999), Time and frequency synchronization for OFDM using PN-sequence preambles, Proceedings of IEEE Vehicular Technology Conference, Vol. 4, pp. 2203-2207, Amsterdam, The Netherlands, September 19-22, doi: 10.1109/VETECF.1999.797329.
  • 15. van Walree P., Socheleau F. X., Otnes R., Jenserud T. (2017), The watermark benchmark for underwater acoustic modulation schemes, IEEE Journal of Oceanic Engineering, 42 (4): 1007-1018, doi: 10.1109/JOE.2017.2699078.
  • 16. Zhou S., Wang Z. (2014), OFDM for underwater acoustic communications, John Wiley & Sons.
  • 17. Zhenrui C., Yahong R. Z., Jintao W., Jian S. (2013), Synchronization and Doppler scale estimation with dual PN padding TDS-OFDM for underwater acoustic communication, Proceedings of 2013 OCEANS – San Diego, San Diego, CA, pp. 1-4, doi: 10.23919/OCEANS.2013.6741170.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbbddda1-95c4-4594-a0e1-136b2de0a689
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.