Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper an active multimodal beam vibration reduction via one actuator is considered. The optimal actuator distribution is analyzed with two methods: an exact mathematical principles and the LQ problem idea. It turned out that the same mathematical expressions are derived. Thus, these methods are equivalent.
Wydawca
Czasopismo
Rocznik
Tom
Strony
599--603
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Halszki 31/12, 30-611 Kraków, Poland
autor
- Laboratory of Acoustics, Department of Electrical and Computer Engineering, Rzeszów University of Technology Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- 1. AUGUSTYN E., KOZIEŃ M.S., PRĄCIK M. (2014), Reduction of torsional vibration of free-clamped, beam by piezoelectric elements, E-book Forum Acusticum, SS22_8, http://www.fa2014.agh.edu.pl/fa2014_cd/
- 2. BRAŃSKI A., BORKOWSKI M., SZELA S. (2010), The idea of the selection of PZT-beam interaction forces in active vibration protection problem, Acta Physica Polonica, 118, 17-22.
- 3. BRAŃSKI A. (2011), An optimal distribution of actuators in active beam vibration - some aspects, theoretical considerations, Acoustic Waves, Chapter 18, InTech, Rijeka, Chorwacja, 397-418.
- 4. BRAŃSKI A., LIPIŃSKI G. (2011), Analytical determination of the PZT’s distribution in active beam vibration protection problem, Acta Physica Polonica 119, 936-941.
- 5. BRAŃSKI A. (2013), Effectiveness analysis of the beam modes active vibration protection with different number of actuators, Acta Physica Polonica, 123, 1123-1127.
- 6. BRUANT I., PROSLIER L. (2005), Optimal location of actuators and, sensors in active vibration control, J. Intelligent Material System Structures, 16, 197-206.
- 7. BRUANT I., GALLIMARD L., NIKOUKAR S. (2010), Optimal piezoelectric actuator and, sensor location for active vibration control, using genetic algorithm,, J.S.V., 329, 1615-1635.
- 8. FULLER C.R., ELLIOT S.J., NIELSEN P.A. (1997), Active control of vibration, Academic Press, London.
- 9. GUNEY M., ESKINAT E. (2007), Optimal actuator and sensor placement inflexible structures using closed-loop criteria, J.S.V., 312, 210-233.
- 10. GUPTA V., SHARMA M., THAKUR N. (2010), Optimization Criteria for Optimal Placement of Piezoelectric Sensors and, Actuators on Smart Structure: A Technical Review, Journal of Intelligent Material Systems and Structures, 21.
- 11. HANSEN C.H., SNYDER S.D. (1997), Active control of noise and vibration, E&FN SPON, London.
- 12. KALISKI S. (1986), Vibrations and waves [in Polish], PWN, Warszawa.
- 13. KASPRZYK S., WlCIAK M. (2007), Differential equation of transverse vibrations of a beam with a local stroke change of stiffness, Opuscula Mathematica, 27, 245-252.
- 14. KOZIEN M.S., WlCIAK J. (2008), Reduction of structural noise inside crane cage by piezoelectric actuators - FEM simulation, Arch. Acoust., 33, 4, 643-652.
- 15. KOZIEN M.S. (2013), Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution, Acta Physica Polonica, 123, 1029-1033.i
- 16. Qiu Z., ZHANG X., Wu H., ZHANG H. (2007), Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate, J.S.V., 301, 521-543.
- 17. DE SlLVA C.W. (2000), Vibration, Fundamentals and practice, CRC Press.
- 18. WlCIAK J. (2007), Modeling of vibration and, noise control of a submerged circular plate, Arch. Acoust., 32, 4 (Suppl.), 265-270.
- 19. WlCIAK J. (2008), Vibration and Structural Acoustic Control-Selected, Aspects, AGH, Kraków.
- 20. ŻOŁOPA E., BRAŃSKI A. (2014a), Analytical Determination of Optimal Actuators Position for Single Mode Active Reduction of Fixed-free Beam Vibration Using the LQ Problem, Idea, Acta Physica Polonica, 125, 155- 158.
- 21. ŻOŁOPA E., BRAŃSKI A. (2014b), An active reduction of general beam vibration via actuator, E-book Forum Acusticum, SS22_11, http://www.fa2014.agh.edu.pl/fa2014_cd/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbbc451a-5cdd-4362-b934-65751b4fa79c