PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of pressing pressure on microstructure and selected strength properties of AlSi-CF composite castings

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of the study of the microstructure and selected strength properties (Rm, E) of an aluminum composite reinforced with chopped carbon fibers are presented. Composite castings were produced by the combined method of mechanical mixing and direct squeeze casting. Silumin EN 44300 and carbon fibers with a diameter of 6-7 μm and a length of 5-6 mm with a metallic coating - Ni (Tenax) and without a coating (Fortafil) were selected for the investigations. Experiments were carried out for 4 pressure values in the range of 20-80 MPa and their impact on the structural homogeneity of the composites as well as the strength and elasticity of the castings was assessed. The beneficial effect of the metallic coating manifests itself directly in the properties of the composites. The tensile strength of the composites reinforced with Tenax fibers is approx. 250 MPa and is 10% higher than the Rm of the reference alloy of the matrix. This level of strength is achieved by applying a pressing pressure of 60 MPa. The lack of a cohesive connection of the fibers with the matrix and a significant number of internal defects in the structure of the composite reinforced with Fortafil fiber cause a reduction in its strength both in relation to the composite with Tenax fibers and the reference alloy. As part of the strength tests, it was shown that chopped carbon fibers cause a significant increase in the elastic properties (E) of composites with an AlSi matrix, while the effect of the preparation of the surface of the reinforcing phase as well as the pressing pressure on this property are insignificant.
Rocznik
Strony
197--201
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Department of Metallurgy and Metal Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • 1. Miracle D., Metal matrix composites – from science to technological significance, Composites Science and Technology 2005, 65, 2526-2540.
  • 2. Bartkowski D., Bartkowsk A., Popielarski P., Hajkowski J., Piasecki A., Characterization of W-Cr metal matrix composite coatings reinforced with wc particles produced on lowcarbon steel using laser processing of precoat, Materials 2020, 13(22), 1-21, 5272.
  • 3. Chand S., Review carbon fibers for composites, Journal of Materials Science 2000, 35, 1303-1313.
  • 4. Dyzia M., Dolata A.J., Śleziona J., Preliminary analysis of aluminum matrix compositions for composites reinforcement with carbon fibers, Steel Research International 2012, 83, 981-987.
  • 5. Zhu J., Jiang W., Li G., Guan F., Yu Y., Fan Z., Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting, Journal of Materials Processing Technology, 2020, 283, 116699.
  • 6. Previtali B., Pocci D., Taccardo C., Application of traditional investment casting process to aluminium matrix composites, Composites Part A: Applied Science and Manufacturing 2008, 39(10), 1606-1617.
  • 7. Dmitruk A., Żak A., Naplocha K., Dudziński W., Morgiel J., Development of pore-free Ti-Al-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration, Materials Characterization 2018, 146, 182-188.
  • 8. Gawdzińska K., Nagolska D., Szymański P., Determination of duration and sequence of vacuum pressure saturation in infiltrated MMC castings, Archives of Foundry Engineering 2018, 18(1), 23-28.
  • 9. Quaak C.J., Kool W.H., Properties of semisolid aluminium matrix composites, Materials Science and Engineering A 1994, 188(30), 277-282.
  • 10. Naher S., Brabazon D., Looney L., Computational and experimental analysis of particulate distribution during Al-SiC MMC fabrication, Composites Part A: Applied Science and Manufacturing 2007, 38(3), 719-729.
  • 11. Vijayaram T., Sulaiman S., Hamouda A., Ahmad M., Fabrication of fiber reinforced metal matrix composites by squeeze casting technology, Journal of Materials Processing Technology 2006, 178, 34-38.
  • 12. Gawdzińska K., Chybowski L., Przetakiewicz W., Laskowski R., Application of FMEA in the quality estimation of metal matrix composite castings produced by squeeze infiltration, Archives of Metallurgy and Materials 2017, 62, 2171-2182.
  • 13. Shalu T., Abhilash E., Joseph M.A., Development and characterization of liquid carbon fibre reinforced aluminium matrix composite, Journal of Materials Processing Technology 2009, 209, 4809-4813.
  • 14. Hajjari E., Divandari M., Arabi H., Effect of applied pressure and nickel coating on microstructural development in continuous carbon fiber-reinforced aluminum composites fabricated by squeeze casting, Materials and Manufacturing Processes 2011, 26(4), 599-603.
  • 15. Rams J., Urena A., Escalera M.D., Sanchez M., Electroless nickel coated short carbon fibres in aluminium matrix composites, Composites A 2007, 38, 566-575.
  • 16. Wielage B., Dorner A., Corrosion studies on aluminium reinforced with uncoated and coated carbon fibres, Composites Science Technology 1999, 59, 1239-1245.
  • 17. Alten A., Erzi E., Gursoy O., Agaoglu G.H., Dispinar D., Orhan G., Production and mechanical characterization of Ni-coated carbon fibers reinforced Al-6063 alloy matrix composites, Journal of Alloys and Compounds 2019, 787, 543-550
  • 18. Bhav Singh B., Balasubramanian M., Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites, Journal of Materials Processing Technology 2009, 209, 2104-2110.
  • 19. Moosa A.A., Al-Khazraji K.K., Muhammed O.S., Tensile strength of squeeze cast carbon fibers reinforced Al-Si matrix composites, Journal of Minerals and Materials Characterization and Engineering 2011, 10, 127-141.
  • 20. Zyska A., Konopka Z., Łągiewka M., Impact strength of squeeze casting AlSi13Cu2-CF composite, Archives of Foundry Engineering 2020, 20(2), 49-52.
  • 21. Baghi M., Niroumand B., Emadi R., Fabrication and characterization of squeeze cast A413-CSF composites, Journal of Alloys and Compounds 2017, 710, 29-36.
  • 22. Ghomashchi M.R., Vikhrov A., Squeeze casting: an overview, Journal of Materials Processing Technology 2000, 101, 1-9.
  • 23. Konopka Z., Łągiewka M., Nadolski M., Zyska A., Determination of the strengthening coefficient of pressure cast AlSi13Cu2/chopped carbon fiber composite, Archives of Metallurgy and Materials 2013, 58, 957-960.
  • 24. Raji A., Khan R.H., Effects of pouring temperature and squeeze pressure on Al-8%Si alloy squeeze cast parts, AU J. 2006, 9(4), 229-237.
  • 25. Yong M.S., Clegg A.J., Process optimization for a squeeze cast magnesium alloy metal matrix composite, Journal of Materials Processing Technology 2005, 168, 262-269.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbba999b-9d3e-435b-bf6c-da924d414ca5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.