PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized fractional low and highpass filters of (1 + α) order on FPAA

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work proposes an optimum design and implementation of fractional-order Butterworth filter of order (1 + α), with the help of analog reconfigurable field-programmable analog array (FPAA). The designed filter coefficients are obtained after dual constraint optimization to balance the tradeoffs between magnitude error and stability margin together. The resulting filter ensures better robustness with less sensitivity to parameter variation and minimum least square error (LSE) in magnitude responses, passband and stopband errors as well as a better –3 dB normalized frequency approximation at 1 rad/s and a stability margin. Finally, experimental results have shown both lowpass and highpass fractional step values. The FPAA-configured outputs represent the possibility to implement the real-time fractional filter behavior with close approximation to the theoretical design.
Rocznik
Strony
635--644
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
autor
  • School of Engineering and Physics, University of the South Pacific, Laucala, Suva, Fiji, now at SPARC Hub Headquarters, 71 Normanby Rd, Notting Hill VIC 3168, Australia
autor
  • School of Engineering and Physics, University of the South Pacific, Laucala, Suva, Fiji
autor
  • School of Engineering and Physics, University of the South Pacific, Laucala, Suva, Fiji
  • School of Engineering and Physics, University of the South Pacific, Laucala, Suva, Fiji
Bibliografia
  • [1] M.D. Ortigueira, J.T.M. Machado, and P. O. Stalczyk, “Fractional signals and systems”. Bull. Pol. Ac.: Tech. 66(4), 385–388 (2018).
  • [2] A. Dzielinski, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”. Bull. Pol. Ac.: Tech. 58(4), 583–592 (2010).
  • [3] I. Podlubny, I. Petras, B. Vinagre, P. O’Leary, and L. Dorcak, “Analog realization of fractional – order controllers and nonlinear dynamics”. Nonlinear Dyn. 29(1), 281–296 (2002).
  • [4] A. Acharya, S. Das, I. Pan, and S. Das, “Extending the concept of analog Butterworth filter for fractional order systems”. Signal Process. 94, 409–420 (2014).
  • [5] A.M. Lopes and J.A.T. Machado, “Fractional-order model of a non-linear inductor”. Bull. Pol. Ac.: Tech. 67(1), 61–67 (2019).
  • [6] R. Prasad, K. Kothari, and U. Mehta, “Flexible fractional supercapacitor model analyzed in time domain”. IEEE Access, 7(1), 122 626–122 633 (2019).
  • [7] A. Radhwan, A. Elwakil, and A. Soliman, “On the generalization of second-order filters to the fractional order domain”. Journal of Circuits, Systems and Computers, 18(2), 361–386 (2009).
  • [8] A. Ali, A. Radwan, and A. Soliman, “Fractional order Butterworth filter: Active and passive realizations”. IEEE J. Emerging Sel. Top. Circuits Syst. 3(3), 346–354 (2013).
  • [9] T. Freeborn, A. Elwakil, and B. Maundy, “Approximated fractional-order inverse Chebyshev lowpass filters”. Circuits, Systems and Signal Process. 35(6), 1973–1982 (2015).
  • [10] T. Freeborn, B. Maundy, and A. Elwakil, “Field programmable analogue array implementation of fractional step filters”. IET Circuits, Devices & Systems 4(6), p. 514 (2010).
  • [11] D. Kubanek and T. Freeborn, “(1 + α ) Fractional-order transfer functions to approximate low-pass magnitude responses with arbitrary quality factor”. Int. J. Electron. Commun. 83, 570–578 (2018).
  • [12] T. Freeborn, “Comparison of (1 + α) fractional-order transfer functions to approximate lowpass Butterworth magnitude responses”. Circuits, Systems and Signal Process. 35(6), 1983–2002 (2016).
  • [13] L.A. Said, S.M. Ismail, A.G. Radwan, A.H. Madian, M.F.A. El-Yazeed, and A.M. Soliman, “On the optimization of fractional order low-pass filters”. Circuits, Systems, and Signal Process. 35(6), 2017–2039 (2016).
  • [14] S. Mahata, S.K. Saha, R. Kara, and D. Mandala, “Optimal design of fractional order low pass butterworth filter with accurate magnitude response”. Digital Signal Process. 72, 96–114 (2018).
  • [15] F. Khateb, D. Kubanek, G. Tsirimokou, and C. Psychalinos, “Fractional-order filters based on low-voltage DDCCs”. Microelectron. J., 50, 50–59 (2016).
  • [16] J. Jerabek, R. Sotner, J. Dvorak, J. Polak, D. Kubanek, N. Herencsar, and J. Koton, “Reconfigurable fractional-order filter with electronically controllable slope of attenuation, pole frequency and type of approximation”. Journal of Circuits, Systems and Computers 26(10), 1750–1757 (2017).
  • [17] G. Tsirimokou, C. Psychalinos, and A. Elwakil, Design of CMOS analog integrated fractional-order circuits. Springer: Switzerland, 2017.
  • [18] P. Ahmadi, B. Maundy, A.S. Elwakil, and L. Belostotski, “High-quality factor asymmetric-slope band-pass f ilters: a fractional-order capacitor approach”. IET Circuits, Devices & Systems 6(3), 187 (2012).
  • [19] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization”. in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, vol. 3, 1999.
  • [20] J. Kennedy and R. Eberhart, “Particle swarm optimization”. In IEEE International Conference on Neural Networks, Perth, WA, 1995, pp. 1942–1948.
  • [21] D. Kubanek, T. Freeborn, J. Koton, and N. Herencsar, “Evaluation of (1 + α) fractional order approximated Butterworth high pass and band pass filter transfer functions”. Elektronika i Elektrotechnika 24(2), 37–41 (2018).
  • [22] A. Radwan, A. Soliman, A. Elwakil, and A. Sedeek, “On the stability of linear systems with fractional-order elements”. Chaos, Solitons & Fractals 40(5), 2317–2328 (2009).
  • [23] Anadigm, “3rd generation dynamically reconfigurable dpASP”. AN231E04 Datasheet Rev 1.2, (2007).
  • [24] B. Krishna and K. Reddy, “Active and passive realization of fractance device of order 1/2”. Act. Passive Electron. Compon. 1, 1–5 (2008).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbb5bdbd-1935-4fec-8b58-6a5812201a19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.