PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PLZT microfibers technology optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrocaloric (EC) structures for a new generation of cooling or heating elements utilize the temperature dependence of spontaneous polarization in some ferroelectric materials to convert waste heat into electricity and vice versa. A (Pb0.93La0.07) (Zr0.65Ti0.35)O3 material, have the largest recorded pyroelectric coefficient. An effective predicted form for such applications is fiber, due to small heat capacitance and quick response time, even for nano second laser excitation. Consequently, the presented work provides a description of the optimization of structural, ferroelectric and piezoelectric properties of obtained fibers, finally concluding on necessity of sintering temperature reduction in 100°C in contrast to bulk form to effectively prevent its destruction.
Twórcy
autor
  • Institute of Technology and Mechatronics, Faculty Of Computer Science And Material Science, University Of Silesia, 12 Żytnia str., Sosnowiec, Poland
autor
  • Institute of Technology and Mechatronics, Faculty Of Computer Science And Material Science, University Of Silesia, 12 Żytnia str., Sosnowiec, Poland
autor
  • Institute of Technology and Mechatronics, Faculty Of Computer Science And Material Science, University Of Silesia, 12 Żytnia str., Sosnowiec, Poland
autor
  • Institute of Technology and Mechatronics, Faculty Of Computer Science And Material Science, University Of Silesia, 12 Żytnia str., Sosnowiec, Poland
autor
  • EMPA, Laboratory for High Performance Ceramics, 8600 Duebendorf, Switzerland
Bibliografia
  • [1] M. Lines, A. Glass, Principles and Applications of Ferroeledries and Related Materials. Oxford 1977.
  • [2] E. Fatuzzo, W. J. Merz, Ferroelectricity, Amsterdam 1967.
  • [3] T. Mitsui, I. Tatsuzaki, E. Nakamura. Introduction to the Physics of Ferroelectricity, London 1976.
  • [4] G. Lu, B. Rozic, Q. M. Zhang, Z. Kutnjak, R Pirc, M. Lin, X. Ii, L. Gorny. Appl. Phys. Lett. 97, 202901, 1-3 (2010).
  • [5] B. Rozic, M. Kosec, H. Ursic, J. Hole. B. Malic. Q.M. Zhang, R. Blinc, R. Pirc, Z. Kutnjak, J. Appl. Phys. 110, 064118, 1-5 (2011).
  • [6] A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whalmore, N. D. Mathur, Science 311, 1270-1276 (2006).
  • [7] B. Neese, B. Chu, S. G Lu, Y. Wang, E. Furman, Q. M. Zhang. Science 321, 821-824 (2008).
  • [8] F. Scott, Science 315, 954-959 (2007).
  • [9] A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, N. D. Mathur, Appl. Phys. Lett. 89, 242912 1-3 (2006).
  • [10] G. Akcay, S.P. Alpay, G.A. Rossetti, J.F. Scott. J. Appl. Phys. 103, 024104, 1-7 (2008).
  • [11] D. Guyomar, G. Scbald, B. Guiffard, L. Scvcyrat, J. Phys. D: Appl. Phys. 39, 4491 (2006).
  • [12] S. Prosandeev, I. Ponomareva, L. Bcllaichc, Phys. Rev. B 78, 052103, 1-4 (2008).
  • [13] S. Kar-Narayan, N. D. Mathur, J. Phys. D: Appl. Phys. 43, 032002 (2010).
  • [14] A. A. Bokov, Z. G. Ye, J. Mater. Sci. 41, 1, 31-52 (2006).
  • [15] B. Neese, S. G. Lu, Baojin Chu, Q. M. Zhang, Appl. Phys. Lett. 94, 042910, 1-7 (2009).
  • [16] F. Y Lee. H. Jo, C. Lynch, L. Pilon. Smart Mater Struct. 22, 025038-025054 (2013).
  • [17] R. Kandilian, A. Navid, L. Pilon, Smart Mater Struct. 20. 055020-055030 (2011).
  • [18] M. N. Rahaman: Ceramic Processing, Kirk-Othmer Encyclopedia of Chemical Technology 2014
  • [19] H. Liu, R. Harrison, A. Putnis, J. Appl. Phys. 90, 6321-6326 (2001).
  • [20] G. H. Haertling, J. Am. Ceram. Soc. 82. 797-818 (1999).
Uwagi
EN
This research was supported by the National Centre for Research and Development, grant no. TANGO1/267100/ NCBR/2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbb44629-2db6-484c-a116-46863d7f5a57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.