PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Iron-Modified Biochar from Sugarcane Bagasse and Heterogeneous Fenton Process for Batik Dye Removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Batik is a widely recognized form of clothing in Indonesian society. The batik-making process uses synthetic dyes, which can pollute the environment. This study aims to modify biochar derived from sugarcane bagasse using iron (Fe) synthesis. Biochar was produced through pyrolysis, while iron was sourced from beach sand in Glagah, Yogyakarta. The research involved four stages: (1) production of biochar from sugarcane bagasse, (2) modification of biochar with iron through beach sand synthesis, (3) application of iron-modified biochar (IMB) to methylene blue (MB), and (4) analysis of biochar characteristics. The results show that iron-modified biochar (IMB) affects biochar properties. IMB falls into the micropore category with a micropore surface area of 71.1%. The optimum wavelength was 571 nm with an adsorption level of 0.155. The application of IMB to batik wastewater demonstrated that adding 6% Fe and soaking for 180 minutes achieved the highest reduction in batik wastewater at approximately 69% with an R squared value (R²) of 0.975. Degradation of batik dye with 6% Fe using the Heterogeneous Fenton method resulted in yellow color degradation of 16%, fast green 3%, methylene orange 4%, red 3%, and methylene blue 23%. These findings highlight the potential of using sugarcane bagasse as a renewable resource for producing adsorbents that contribute to effective batik wastewater treatment.
Rocznik
Strony
292--305
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Kragilan, Tamanan, Banguntapan, Bantul, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Kragilan, Tamanan, Banguntapan, Bantul, Indonesia
  • Department of Agroindustrial Technology, Faculty of Science and Technology, Universitas Darussalam Gontor, Indonesia
autor
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Kragilan, Tamanan, Banguntapan, Bantul, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Kragilan, Tamanan, Banguntapan, Bantul, Indonesia
Bibliografia
  • 1. Abdelhameed, R.M., Emam, H.E. 2019. Design of ZIF(Co & Zn)@wool composite for efficient removal of pharmaceutical intermediate from wastewater. Journal of Colloid and Interface Science, 552, 494–505. https://doi.org/10.1016/j.jcis.2019.05.077
  • 2. Adegoke, K.A., Akinnawo, S.O., Adebusuyi, T.A., Ajala, O.A., Adegoke, R.O., Maxakato, N.W., Bello, O.S. 2023. Modified biomass adsorbents for removal of organic pollutants: a review of batch and optimization studies. International Journal of Environmental Science and Technology, 20(10), 11615–11644. https://doi.org/10.1007/s13762-023-04872-2
  • 3. Ahmed, A.S., Alsultan, M., Hameed, R.T., Assim, Y.F., Swiegers, G.F. 2022. High surface area activated charcoal for water purification. Journal of Composites Science, 6(10), 1–9. https://doi.org/10.3390/jcs6100311
  • 4. Ali, S., Zhu, J., Muhammad, N., Sheng, T. 2014. Science direct effect of synthesis methods on magnetic Kans grass biochar for enhanced As (III, V) adsorption from aqueous solutions. Biomass and Bioenergy, 71(V), 299–310. https://doi.org/10.1016/j.biombioe.2014.09.027
  • 5. Ambaye, T.G., Vaccari, M., van Hullebusch, E.D., Amrane, A., Rtimi, S. 2021. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273–3294. https://doi.org/10.1007/s13762-020-03060-w
  • 6. Amelia, S., Sediawan, W.B., Mufrodi, Z., Ariyanto, T. 2019. Modification of iron oxide catalysts supported on the biomass based activated carbon for degradation of dye wastewater. Jurnal Bahan Alam Terbarukan, 7(2), 164–168. https://doi.org/10.15294/jbat.v7i2.17174
  • 7. Amelia, S., Sediawan, W.B., Prasetyo, I., Munoz, M., Ariyanto, T. 2020. Role of the pore structure of Fe/C catalysts on heterogeneous Fenton oxidation. Journal of Environmental Chemical Engineering, 8(1), 102921. https://doi.org/10.1016/j.jece.2019.102921
  • 8. Bai, L., Su, X., Feng, J., Ma, S. 2021. Preparation of sugarcane bagasse biochar/nano-iron oxide composite and mechanism of its Cr (VI) adsorption in water. Journal of Cleaner Production, 320(July), 128723. https://doi.org/10.1016/j.jclepro.2021.128723
  • 9. Bayoka, H., Snoussi, Y., Bhakta, A.K., El Garah, M., Khalil, A.M., Jouini, M., Ammar, S., Chehimi, M.M. 2023. Evidencing the synergistic effects of carbonization temperature, surface composition and structural properties on the catalytic activity of biochar/bimetallic composite. Journal of Analytical and Applied Pyrolysis, 173, 106069. https://doi.org/ https://doi.org/10.1016/j.jaap.2023.106069
  • 10. Borhan, A., Yusup, S., Lim, J.W., Show, P.L. 2019. Characterization and modelling studies of activated carbon produced from rubber-seed shell using KOH for CO2 adsorption. Processes, 7(11). https://doi.org/10.3390/pr7110855
  • 11. Chen, H., Yang, X., Liu, Y., Lin, X., Wang, J., Zhang, Z., Li, N., Li, Y., Zhang, Y. 2021. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Management, 130, 82–92. https://doi.org/10.1016/j.wasman.2021.05.015
  • 12. Chen, L., Ji, T., Yuan, R., Mu, L., Brisbin, L., Zhu, J. 2015. Unveiling mesopore evolution in carbonized wood: interfacial separation, migration, and degradation of lignin phase. ACS Sustainable Chemistry & Engineering, 3(10), 2489–2495. https://doi.org/10.1021/acssuschemeng.5b00563
  • 13. Cheng, N., Wang, B., Wu, P., Lee, X., Xing, Y., Chen, M., Gao, B. 2021. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environmental Pollution, 273, 116448. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116448
  • 14. Dalai, C., Jha, R., Desai, V.R. 2015. Rice husk and sugarcane baggase based activated carbon for iron and manganese removal. Aquatic Procedia, 4(Icwrcoe), 1126–1133. https://doi.org/10.1016/j.aqpro.2015.02.143
  • 15. Dziejarski, A.M.K.-C. and Dziejarski, B. 2022. Linear and non-linear regression analysis for the adsorption kinetics of SO 2 in a fixed carbon bed reactor-a case study. Energies, 15, 1–22.
  • 16. Dzoujo, H.T., Shikuku, V.O., Tome, S., Akiri, S., Kengne, N.M., Abdpour, S., Janiak, C., Etoh, M.A., Dina, D. 2022. Synthesis of pozzolan and sugarcane bagasse derived geopolymer-biochar composites for methylene blue sequestration from aqueous medium. Journal of Environmental Management, 318(June), 115533. https://doi.org/10.1016/j.jenvman.2022.115533
  • 17. Guo, F., Dong, Y., Dong, K., Xu, L., Liu, S., Qiao, Q., Wei, H., Wang, Y. 2023. Role of biochar-based catalysts in microwave-induced biomass pyrolysis: Structural properties and modification with Fe-series metals. Fuel, 341(September 2022), 127769. https://doi.org/10.1016/j.fuel.2023.127769
  • 18. He, Q., Qi, B., Zhang, D., Yi, X. 2024. Adsorption characteristics of methylene blue onto biochar derived from lavender straws. In D. Han M.J.K. Bashir (Eds.), Environmental Governance, Ecological Remediation and Sustainable Development (ICEPG 2023) 23–36. Springer Nature Switzerland.
  • 19. Ich.unesco.org. 2009. Reference from UNESCO Website: (https://ich.unesco.org/en/RL/indonesian-batik-00170).
  • 20. Jamilatun, S., Amelia, S., Pitoyo, J., Ma’Arif, A., Mufandi, I. 2023. Preparation and characteristics of effective biochar derived from sugarcane bagasse as adsorbent. International Journal of Renewable Energy Research, 13(2), 673–680. https://doi.org/10.20508/ijrer.v13i2.13719.g8737
  • 21. Jamilatun, S., Mufandi, I., Evitasari, R.T., Budiman, A. 2020. Effects of temperature and catalysts on the yield of bio-oil during the pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Research, 10(2), 678–686.
  • 22. Jamilatun, S., Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D.C., Mufandi, I. 2022. Experimental study on the characterization of pyrolysis products from bagasse (Saccharum Officinarum L.): bio-oil, biochar, and gas products. Indonesian Journal of Science and Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566
  • 23. Jamilatun, S., Pitoyo, J., Amelia, S., Ma, A., Hakika, D.C., Mufandi, I. 2022. Experimental study on the characterization of pyrolysis products from bagasse (Saccharum Officinarum L.) : bio-oil, biochar, and gas products. Indonesia Journal of Science and Technology, 7(3), 565–582.
  • 24. Jiang, B., Lin, Y., Carl, J. 2018. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics. Bioresource Technology, 270(August), 603–611. https://doi.org/10.1016/j.biortech.2018.08.022
  • 25. Lam, Y.F., Lee, L.Y., Chua, S.J., Lim, S.S., Gan, S. 2016. Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent. Ecotoxicology and Environmental Safety, 127, 61–70. https://doi.org/https://doi.org/10.1016/j.ecoenv.2016.01.003
  • 26. Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., Huang, H. 2021. An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 763, 144204. https://doi.org/10.1016/j.scitotenv.2020.144204
  • 27. Li, P., Zhou, M., Liu, H., Lei, H., Jian, B., Liu, R., Li, X., Wang, Y., Zhou, B. 2022. Preparation of green magnetic hydrogel from soybean residue cellulose for effective and rapid removal of copper ions from wastewater. Journal of Environmental Chemical Engineering, 10(5), 108213. https://doi.org/10.1016/j.jece.2022.108213
  • 28. Li, Y., Yu, H., Liu, L., Yu, H. 2021. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. Journal of Hazardous Materials, 420, 126655. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.126655
  • 29. Liao, W., Zhang, X., Ke, S., Shao, J., Yang, H., Zhang, S., Chen, H. 2022. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Industrial Crops and Products, 186(May), 115238. https://doi.org/10.1016/j.indcrop.2022.115238
  • 30. Loc, N.X., Tuyen, P.T.T., Mai, L.C., Phuong, D.T.M. 2022. Chitosan-modified biochar and unmodified biochar for methyl orange: adsorption characteristics and mechanism exploration. Toxics, 10(9). https://doi.org/10.3390/toxics10090500
  • 31. Ma, Y., Li, M., Li, P., Yang, L., Wu, L., Gao, F., Qi, X., Zhang, Z. 2021. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. Bioresource Technology, 319(September 2020). https://doi.org/10.1016/j.biortech.2020.124199
  • 32. Manyatshe, A., Cele, Z.E.D., Balogun, M.O., Nkambule, T.T.I., Msagati, T.A.M. 2022. Chitosan modified sugarcane bagasse biochar for the adsorption of inorganic phosphate ions from aqueous solution. Journal of Environmental Chemical Engineering, 10(5), 108243. https://doi.org/10.1016/j.jece.2022.108243
  • 33. Maryudi, M., Amelia, S., Salamah, S. 2019. Removal of methylene blue of textile industry waste with activated carbon using adsorption method. Reaktor, 19(4), 168–171. https://doi.org/10.14710/reaktor.19.4.168-171
  • 34. Mubarik, S., Saeed, A., Athar, M.M., Iqbal, M. 2016. Characterization and mechanism of the adsorptive removal of 2,4,6-trichlorophenol by biochar prepared from sugarcane baggase. Journal of Industrial and Engineering Chemistry, 33, 115–121. https://doi.org/10.1016/j.jiec.2015.09.029
  • 35. Mufandi, I., Treedet, W., Singbua, P., Suntivarakorn, R. 2020. Efficiency of bio - oil production from napier grass using circulating fluidized bed reactor with bio - oil scrubber. KKU Research Journal, 20(December), 94–107.
  • 36. Oginawati, K., Suharyanto, Susetyo, S.H., Sulung, G., Muhayatun, Chazanah, N., Dewi Kusumah, S. W., Fahimah, N. 2022. Investigation of dermal exposure to heavy metals (Cu, Zn, Ni, Al, Fe and Pb) in traditional batik industry workers. Heliyon, 8(2), e08914. https://doi.org/10.1016/j.heliyon.2022.e08914
  • 37. Omiri, J., Snoussi, Y., Bhakta, A.K., Truong, S., Ammar, S., Khalil, A.M., Jouini, M., Chehimi, M.M. 2022. Citric-acid-assisted preparation of biochar loaded with copper/nickel bimetallic nanoparticles for dye degradation. In Colloids and Interfaces 6(2). https://doi.org/10.3390/colloids6020018
  • 38. Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y., Gidarakos, E. 2012. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management, 96(1), 35–42. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.10.010
  • 39. Da Silva, C.P., Da Guarda Souza, M.O., Dos Santos, W.N.L., Silva, L.O.B. 2019. Optimization of the production parameters of composites from sugarcane bagasse and iron salts for use in dye adsorption. Scientific World Journal, 2019. https://doi.org/10.1155/2019/8173429
  • 40. Phuong, D.T.M., Miyanishi, T., Okayama, T., Kose, R. 2016. Pore characteristics & adsorption capacities of biochars derived from rice residues as affected by variety and pyrolysis temperature. American Journal of Innovative Research and Applied Sciences, 2(5), 179–189.
  • 41. Praipipat, P., Ngamsurach, P., Sanghuayprai, A. 2023. Modification of sugarcane bagasse with iron(III) oxide-hydroxide to improve its adsorption property for removing lead(II) ions. Scientific Reports, 13(1), 1467. https://doi.org/10.1038/s41598-023-28654-5
  • 42. Qin, J., Wang, J., Long, J., Huang, J., Tang, S., Hou, H., Peng, P. 2022. Recycling of heavy metals and modification of biochar derived from Napier grass using HNO3. Journal of Environmental Management, 318(June), 115556. https://doi.org/10.1016/j.jenvman.2022.115556
  • 43. Qiu, B., Shao, Q., Shi, J., Yang, C., Chu, H. 2022. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology, 300(June), 121925. https://doi.org/10.1016/j.seppur.2022.121925
  • 44. Salahshour, R., Shanbedi, M., Esmaeili, H. 2021. Methylene blue dye removal from aqueous media using activated carbon prepared by lotus leaves: Kinetic, equilibrium and thermodynamic study. Acta Chimica Slovenica, 68(2), 363–373. https://doi.org/10.17344/acsi.2020.6311
  • 45. Saravanan, A., Kumar, P.S. 2022. Biochar derived carbonaceous material for various environmental applications: Systematic review. Environmental Research, 214(P1), 113857. https://doi.org/10.1016/j.envres.2022.113857
  • 46. Sing, K.S.W. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619. https://doi.org/doi:10.1351/pac198557040603
  • 47. Solayman, H.M., Hossen, M.A., Abd Aziz, A., Yahya, N.Y., Leong, K.H., Sim, L.C., Monir, M.U., Zoh, K.D. 2023. Performance evaluation of dye wastewater treatment technologies: A review. Journal of Environmental Chemical Engineering, 11(3), 109610. https://doi.org/10.1016/j.jece.2023.109610
  • 48. Sutisna, S., Wibowo, E., Rokhmat, M., Rahman, D.Y., Murniati, R., Khairurrijal, K., Abdullah, M. 2017. Batik wastewater treatment using TiO 2 nanoparticles coated on the surface of plastic sheet. Procedia Engineering, 170, 78–83. https://doi.org/10.1016/j.proeng.2017.03.015
  • 49. Tagbo, J., Ositadinma, N., Iheanacho, C., Chiedozie, C., Onu, C.E. 2022. Linear and nonlinear kinetics analysis and adsorption characteristics of packed bed column for phenol removal using rice husk - ac-tivated carbon. Applied Water Science, 12(5), 1–16. https://doi.org/10.1007/s13201-022-01635-1
  • 50. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
  • 51. Tomczyk, A., Kondracki, B., Szewczuk-Karpisz, K. 2023. modification of biochars as a method to improve its surface properties and efficiency in removing xenobiotics from aqueous media. Chemosphere, 312(P1), 137238. https://doi.org/10.1016/j.chemosphere.2022.137238
  • 52. Tran, H.D., Phuc, H.N., Phuong, P.V.H., Thien, L.N.P., Nguyen, T.L., Tran, U.P.N., Dang, V.-H. 2024. A proposed model for breakthrough curves of methylene blue adsorption on biochar. Chemical and Biochemical Engineering Quarterly, 38(2), 153–164. https://doi.org/10.15255/cabeq.2023.2280
  • 53. Treedet, W., Suntivarakorn, R., Mufandi, I., Singbua, P. 2020. Bio-oil production from Napier grass using a pyrolysis process: Comparison of energy conversion and production cost between bio-oil and other biofuels. International Energy Journal, 20(2), 155–168.
  • 54. Ullah, I., Nadeem, R., Iqbal, M., Manzoor, Q. 2013. Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecological Engineering, 60, 99–107. https://doi.org/10.1016/j.ecoleng.2013.07.028
  • 55. Treedet, W., Suntivarakorn, R., Mufandi, I., Singbua P. 2021. Improvement of bio-oil production system by using spray condenser-investigation of yields, Properties, and Production Cost. BioEnergy Research.
  • 56. Widjajanti, K., Prihantini, F.N., Wijayanti, R. 2022. Sustainable development of business with canvas business model approach: empirical study on MSMEs Batik Blora, Indonesia. International Journal of Sustainable Development and Planning, 17(3), 1025–1032. https://doi.org/10.18280/ijsdp.170334
  • 57. Yaashikaa, P.R., Senthil Kumar, P., Varjani, S.J., Saravanan, A. 2019. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresource Technology, 292(August), 122030. https://doi.org/10.1016/j.biortech.2019.122030
  • 58. Yue, T., Cao, X., Liu, Q., Bai, S., Zhang, F., Liu, L. 2023. Enhancement on removal of oxytetracycline in aqueous solution by corn stover biochar: Comparison of KOH and KMnO4 modifications. Chemical Engineering Research and Design, 190, 353–365. https://doi.org/10.1016/j.cherd.2022.12.049
  • 59. Zhang, X., Zhang, X., Zhao, S., Cai, Y., Wang, S. 2022. Sulfurized bimetallic biochar as adsorbent and catalyst for selective co-removal of cadmium and PAHs from soil washing effluents. Environmental Pollution, 314(October), 120333. https://doi.org/10.1016/j.envpol.2022.120333
  • 60. Zhu, J. 2020. Magnetic biochar with Mg/La modification for highly effective phosphate adsorption and its potential application as an algaecide and fertilizer. Environmental Research, 116252. https://doi.org/10.1016/j.envres.2023.116252 s. 292—305 Bibliogr. 60 poz., rys., tab.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbb2f9fe-52a7-4fa7-9d3f-07ccbbb734be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.