Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work presents the results of research on erosion and landform changes of a bottom of a dry erosive-accumulation valley in Elizówka in 1958, 1970 and 2016. The changes have been examined with the use of geodetic topographic surveys techniques. The research field was a 480-metres long part of the valley bottom. The topographic surveys in 1958 and 1970 were conducted with longitudinal (parallel to the bottom of the valley) and cross (every 20 metres) sections method. In 2016 the modern measuring devices were used. All the results, together with coordinates of points and historical data were converted into GIS spatial layer. The altitude values formed the input data for interpolation of rasters showing changes of the topography in three periods. Three TIN models were also developed to distinguish erosion and accumulation zones plus the quantity of eroded and accumulated material. The valley on the majority of its length has been raised and has changed from V-shaped into U-shaped. Accumulation of the soil material led to levelling the bottom. Accumulation concentrates along a flow line, while soil washout mainly at the bottom of slopes. The thickest sediment layers were observed in the lowest part. For the whole 1958–2016 period a total of 3470 m3 soil material has been deposited on the area of about 1.62 ha, while in the same time only 130 m3 has been eroded (from 0.22 ha).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
210--216
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- University of Life Sciences in Lublin, Department of Environmental Engineering and Geodesy, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
autor
- University of Life Sciences in Lublin, Department of Environmental Engineering and Geodesy, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
autor
- University of Life Sciences in Lublin, Department of Environmental Engineering and Geodesy, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
Bibliografia
- 1. Alba M., Giussani A., Roncoroni F., Scaioni M. Valgoi P. 2006. Geometric Modelling of a Large Dam Terrestrial Laser Scanning. In Proc. of FIG Mondial Congres, Germany, Oct. 8–13, pp. 15.
- 2. Arriaga F.J, Lowery B. 2003.Corn production on an eroded soil: effects of total rainfall and soil water storage. Soil and Tillage Research, 71, 87–93.
- 3. Daniels R.B., Gilliam J.W., Cassel D.K., Nelson L.A. 1985. Soil erosion class and landscape position in the North Carolina Piedmont. Soil Sci. Soc. Am. J., 499, 991–995.
- 4. Duan X., Xie Y., Ou T., Lu H. 2011. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China. Catena, 87, 268–275.
- 5. Grzywna A., Pałys S. 2000. Changes of topographic profile in dried valley bottom. Acta Agrophysica, 35, 86–92.
- 6. Hladký J., Novotná J., Elbl J., Kynický J., Juřička D., Novotná J., Brtnický M., 2016. Impacts of Water Erosion on Soil Physical Properties Acta Univ. Agric. Silvic. Mendelianae Brun., 64, 1523–1527.
- 7. Ijaz A., Khan F., Bhatti A.U. 2006. Some physicochemical properties of soil as influenced by surface erosion under different cropping systems on uplandsloping soil. Soil and Environ., 25(1), 28–34.
- 8. Jankauskas B, Fullen M.A. 2002. A pedological investigation of soil erosion severity on undulating land in Lithuania. Canadian Journal of Soil Sci., 82, 311–321.
- 9. Kociuba W., Kubisz W., Zagórski P. 2014. Use of terrestrial laser scanning (TLS) for monitoring and modelling of geomorphic processes and phenomena at a small and medium spatial scale in Polar environment (Scott River – Spitsbergen). Geomorphology 212, 84–96.
- 10. Kondracki J. 1994. Geografia Polski. Mezoregiony fizyczno-geograficzne. PWN W-wa, ss. 304.
- 11. Kowalik P. 2001. Ochrona środowiska glebowego. PWN, W-wa, ss. 258.
- 12. Licznar M., Licznar S.E., Zawerbny T. 1998. Wpływ erozji na niektóre właściwości fizykochemiczne gleb lessowych Dolnego Śląska. Bibliotheca Fragmenta Agronomica, 4A/98, 29–39.
- 13. Lim EH, Suter D. 2009. 3D terrestrial LIDAR classifications with super-voxels and multi-scale Conditional Random Fields. Computer-Aided Design, 41, 701–710.
- 14. Mazur A. 2005. Erozja gleb w rolniczej zlewni z okresowym odpływem wody na Wyżynie Lubelskiej w latach 1999–2003. Acta Agrophysica, 5(1), 85–92.
- 15. Mazur A. 2018. Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes. Water, 10, 1132, doi:10.3390/w10091132
- 16. Mazur A., Obroślak R., Nieścioruk K., Król Ż., Gabryszuk J., Rybicki R. 2016. Analysis of erosion control constructions effectiveness the case of a road gully in Wielkopole (Lublin Upland) Journal of Ecological Engineering, 17, 4, 180–183.
- 17. Mazur Z. 1972. Zmiany rzeźby uprawnych zboczy lessowych w Elizówce. Annales UMCS, secctio E, vol. 27, 169–180.
- 18. Obroślak R., Mazur A., Jóźwiakowski K., Dorozhynskyy O., Grzywna A., Rybicki R., Nieścioruk K., Król Ż, Gabryszuk J., Gajewska M. 2017. Using terrestrial laser scanning in inventorying of a hybrid constructed wetland system. Water Science & Technology, 76(9–10), 2664–2671.
- 19. OlsonK.R., Gennadiyew A.N.,Jones R.L., Chernyanskii S. 2002. Erosion pattern on cultivated and reforested hillslopes in Moscow Region, Russia. Soil Sci. Soc. Am. J., 66, 193–201.
- 20. Pałys S., Mazur A. 1998. Zmiany rzeźby na erodowanych lessach na terenie zabezpieczonym i kontrolnym. Bibliotheca Fragmenta Agronomica, 4A, 295–305.
- 21. Pimentel D., Allen J., Beers A., Guinand L., Hawkins A., Linder R., McLanghlin P. Meer B., Musonda D., Perdue D., Poisson S., Salazar R., Siebert S., Stoner K. 1993. Soil erosion and agricultural productivity. [w:] World soil erosion and conservation. Cambridge Univ. Press, Cambridge, 277–292.
- 22. Richardson J.J., Moskal L.M., Bakker J.D. 2014. Terrestrial Laser Scanning for Vegetation Sampling. Sensors 14, 20304–20319.
- 23. Seybold C.A., Herrick J.E., Brejda J.J. 1999. Soil resilience: a fundamental component of soil quality. Soil Sci., 164, 224–234.
- 24. Turski R., Słowińska-Jurkiewicz A., Paluszek J. 1992. The effect of erosion on the spatial differentation of the physical prperties of Orthic Luvisols. Int. Agrophysics, 6, 123–136.
- 25. Young F.J., Hammer R.D. 2000. Soil-landform relationship on a loess-mantled landscape in Missouri. Soil Sci. Soc. Am. J., 61–4, 1443–1454.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbb257b2-a667-4657-926b-374311179401