PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on general theory and methodology in geodesy in Poland in 2019–2022

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a summary of research carried out in 2019–2022 in Poland in the area of general theory and methodology in geodesy. The study contains a description of original contributions by authors affiliated with Polish scientific institutions. It forms part of the national report presented at the 28th General Assembly of the International Union of Geodesy and Geophysics (IUGG) taking place on 11-20 July 2023 in Berlin, Germany. The Polish authors developed their research in the following thematic areas: robust estimation and its applications, prediction problems, cartographic projections, datum transformation problems and geometric geodesy algorithms, optimization and design of geodetic networks, geodetic time series analysis, relativistic effects in GNSS (Global Navigation Satellite System) and precise orbit determination of GNSS satellites. Much has been done on the subject of estimating the reliability of existing algorithms, but also improving them or studying relativistic effects. These studies are a continuation of work carried out over the years, but also they point to new developments in both surveying and geodesy.We hope that the general theory and methodology will continue to be so enthusiastically developed by Polish authors because although it is not an official pillar of geodesy, it is widely applicable to all three pillars of geodesy.
Rocznik
Strony
art. no. e40, 2023
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
  • Military University of Technology, Warsaw, Poland
autor
  • AGH University of Science and Technology, Krakow, Poland
  • Wroclaw University of Environmental and Life Science, Wroclaw, Poland
Bibliografia
  • 1. Baarda, W. (1968). A testing procedure for use in geodetic network. Publications on Geodesy, New Series, Netherlands Geodetic Commission, Delft.
  • 2. Blewitt, G., Kreemer, C., Hammond, W.C. et al. (2016). MIDAS robust trend estimator for accurate GPS station velocities without step detection. J. Geophys. Res. Solid Earth, 121(3), 2054–2068. DOI: 10.1002/2015JB012552.
  • 3. Borkowski, A., and Kosek, W. (2015). Theoretical geodesy. Geod. Cartogr., 64(1), 261–279. DOI: 10.1515/geocart-2015-0015.
  • 4. Borkowski, A., Kosek, W., and Ligas, M. (2019). Geodesy: General theory and methodology 2015–2018. Geod. Cartogr., 68(1), 145–162. DOI: 10.24425/gac.2019.126092.
  • 5. Burša, M, and Šima, Z (1980). Tri-axiality of the Earth, the Moon and Mars. Stud. Geoph. et Geod., 24(3), 211–217.
  • 6. Bury, G., Sosnica, K., Zajdel, R. et al. (2020). Toward the 1-cm Galileo orbits: challenges in modeling of perturbing forces. J. Geod., 94, 16. DOI: 10.1007/s00190-020-01342-2.
  • 7. Bury, G., Sosnica, K., Zajdel, R. et al. (2021). Geodetic datum realization using SLR-GNSS co-location on-board Galileo and GLONASS. J. Geophys. Res. Solid Earth, 126, 10. DOI: 10.1029/2021JB022211.
  • 8. Caspary, W.F. and Borutta, H. (1987). Robust estimation in deformation models. Surv. Rev., 29(223), 29–45.
  • 9. Chang, G. (2015). On least-squares solution to 3D similarity transformation problem under Gauss-Helmert model. J. Geod., 89(6), 573–576. DOI: 10.1007/s00190-015-0799-z.
  • 10. Chang, G. (2016). Closed form least-squares solution to 3D symmetric Helmert transformation with rotational invariant covariance structure. Acta Geod. Geophys., 51, 237–244. DOI: 10.1007/s40328-015-0123-7.
  • 11. Chen, Y.Q. (1983). Analysis of deformation surveys – a generalized method. Technical Report No. 94. University of New Brunswick: Fredericton.
  • 12. Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS Software Version 5.2. DOI: 10.7892/boris.72297.
  • 13. Duchnowski, R., and Wisniewski, Z. (2019). Robustness of Msplit¹qº estimation: a theoretical approach. Stud. Geophys. Geod., 63(3), 390–417. DOI: 10.1007/s11200-018-0548-x.
  • 14. Duchnowski, R., and Wisniewski, Z. (2020). Robustness of squared Msplit¹qº estimation: Empirical analyses. Stud. Geophys. Geod., 64(1), 153–171. DOI: 10.1007/s11200-019-0356-y.
  • 15. Feltens, J. (2009). Vector method to compute the Cartesian (X, Y, Z) to geodetic ¹𝜑– 𝜆– ℎº transformation on a triaxial ellipsoid. J. Geod., 83, 129–137. DOI: 10.1007/s00190-008-0246-5.
  • 16. Getchell, B.C. (1972). Geodetic latitude and altitude from geocentric coordinates. Celestial Mechanics, 5, 300–302.
  • 17. Jarmolowski, W. (2019). On the relations between signal spectral range and noise variance in least-squares collocation and simple kriging: example of gravity reduced by EGM2008 signal. Bollettino di Geofisica Teorica et Applicata, 60(3), 457–474. DOI: 10.4430/bgta0265.
  • 18. Jarmolowski, W., Wielgosz, P., Ren, X. et al. (2021). On the drawback of local detrending in universal kriging in conditions of heterogeneously spaced regional TEC data, low-order trends and outlier occurrences. J. Geod., 95(1), 1–19. DOI: 10.1007/s00190-020-01447-8.
  • 19. Kadaj, R. (2020). Conformal and empirical transformation between the PL-ETRF89 and PL-ETRF2000 reference frames using the new adjustment of the former Polish I class triangulation network. Geod. Cartogr., 70(1). DOI: 10.24425/gac.2021.136680.
  • 20. Kadaj, R. (2021a). Getchell’s method for conversion of Cartesian-geocentric to geodetic coordinates – Its properties and Newtonian alternative. J. Appl. Geod., 15(1), 47–60. DOI: 10.1515/jag-2020-0034.
  • 21. Kadaj, R. (2021b). The method of detection and localization of configuration defects in geodetic networks by means of Tikhonov regularization. Reports on Geodesy and Geoinformatics, 112(1), 19–25. DOI: 10.2478/rgg-2021-0004.
  • 22. Klos, A., Kusche, J., Fenoglio-Marc, L. et al. (2019). Introducing a vertical land motion model for improving estimates of sea level rates derived from tide gauge records affected by earthquakes. GPS Solut., 23, 102. DOI: 10.1007/s10291-019-0896-1.
  • 23. Klos, A., Karegar, M.A., Kusche, J. et al. (2020). Quantifying Noise in Daily GPS Height Time Series: Harmonic Function Versus GRACE Assimilating Modeling Approaches. IEEE Geosci. Remote Sens. Lett., 18, 4. DOI: 10.1109/LGRS.2020.2983045.
  • 24. Klos, A., Dobslaw, H., Dill, R. et al. (2021). Identifying sensitivity of GPS to non-tidal loadings at various time resolutions: examining vertical displacements from continental Eurasia. GPS Solut., 25, 89. DOI: 10.1007/s10291-021-01135-w.
  • 25. Kur, T., Liwosz, T., and Kalarus, M. (2021). The application of inter-satellite links connectivity schemes in various satellite navigation systems for orbit and clock corrections determination: simulation study. Acta Geod. Geophys., 56, 1–28. DOI: 10.1007/s40328-020-00322-4.
  • 26. Langbein, J., and Svarc, J.L. (2019). Evaluation of temporally correlated noise in Global Navigation Satellite System time series: Geodetic monument performance. J. Geophys. Res. Solid Earth, 124, 925–942. DOI: 10.1029/2018JB016783.
  • 27. Lenczuk, A., Leszczuk, G., Klos, A. et al. (2020). Study on the inter-annual hydrology-induced deformations in Europe using GRACE and hydrological models. J. Appl. Geod., 14(4). DOI: 10.1515/jag-2020-0017.
  • 28. Ligas, M. (2020). Point-wise weighted solution for the similarity transformation parameters. Appl. Geomat., 12, 371-377. DOI: 10.1007/s12518-020-00306-7.
  • 29. Ligas, M. (2022). Comparison of kriging and least-squares collocation – Revisited. J. Appl. Geod., 16(3), 217–227. DOI: 10.1515/jag-2021-0032.
  • 30. Ligas, M., and Prochniewicz, D. (2021). Procrustes based closed-form solution to the point-wise weighted rigid-body transformation in asymmetric and symmetric cases. J. Spatial. Sci., 66:3, 445–457. DOI: 10.1080/14498596.2019.1684394.
  • 31. Maciuk, K., Kudrys, J., Bagherbandi, M. et al. (2020). A new method for quantitative and qualitative representation of the noises type in Allan (and related) variances. Earth Planets Space, 72, 186. DOI: 10.1186/s40623-020-01328-6.
  • 32. Mrowczynska, M., and Sztubecki, J. (2021). The network structure evolutionary optimization to geodetic monitoring in the aspect of information entropy. Measurement, 179, 1–15. DOI: 10.1016/j.measurement.2021.109369.
  • 33. Najder, J. (2020). Automatic detection of discontinuities in the station position time series of the reprocessed global GNSS network using Bernese GNSS Software. Acta Geodyn. Geomater., 17, 4, 439–451. DOI: 10.13168/AGG.2020.0032.
  • 34. Niemeier, W. (1982). Principal component analysis and geodetic networks – some basic considerations. Proc. Surv. Control Netw. Heft, 7, 275–291.
  • 35. Niemeier, W., Teskey, W.F., and Lyall, R.G. (1982). Precision, reliability and sensitivity aspects of an open pit monitoring network. Aust. J. Geod. Photogramm. Surv., 37, 1–27.
  • 36. Nistor, S., Suba, N.-S., Maciuk, K. et al. (2021). Analysis of Noise and Velocity in GNSS EPN-Repro 2 Time Series. Remote Sens., 13, 2783. DOI: 10.3390/rs13142783.
  • 37. Nowak, E., and Nowak Da Costa, J. (2022). Theory, strict formula derivation and algorithm development for the computation of a geodesic polygon area. J. Geod., 96, 20. DOI: 10.1007/s00190-022-01606-z.
  • 38. Nowel, K. (2019). Squared Msplit ¹𝑞º S-transformation of control network deformations. J. Geod., 93(7), 1025–1044. DOI: 10.1007/s00190-018-1221-4.
  • 39. Nowel, K. (2020). Specification of deformation congruence models using combinatorial iterative DIA testing procedure. J. Geod., 94(12), 118. DOI: 10.1007/s00190-020-01446-9.
  • 40. Nyrtsov, M.V., Fleis, M.E., Borisov, M.M. et al. (2013). Equal-area projections of the tri-axial ellipsoid: first time derivation and implementation of cylindrical and azimuthal projections for small solar system bodies. Cartogr. J., 52 (1), 114–124. DOI: 10.1080/00087041.2015.1119471.
  • 41. Panou, G. (2013). The geodesic boundary value problem and its solution on a triaxial ellipsoid. J. Geod. Sci., 3(3), 240–249. DOI: 10.2478/jogs-2013-0028.
  • 42. Panou, G., Korakitis, R., and Pantazis, G. (2020). Fitting a triaxial ellipsoid to a geoid model. J. Geod. Sci., 10, 1, 69–82. DOI: 10.1515/jogs-2020-0105.
  • 43. Pedzich, P. (2017). Equidistant map projections of a tri-axial ellipsoid with the use of reduced coordinates. Geod. Cartogr., 66, 271–290. DOI: 10.1515/geocart-2017-0021.
  • 44. Pedzich, P. (2019). A low distortion conformal projection of a tri-axial ellipsoid and its application for mapping of extra-terrestrial objects. Planet Space Sci., 178, 1-9. DOI: 10.1016/j.pss.2019.104697.
  • 45. Pelzer, H. (1972). Nachweis von Staumauerdeformationen unter Anwendung statistischer Verfahren. Berichte Arbeitsgruppe B. Deutscher Geodätentag: Braunschweig.
  • 46. Proszynski, W., and Kwasniak, M. (2019). The effect of observation correlations upon the basic characteristics of reliability matrix as oblique projection operator. J. Geod., 93, 1197–1206. DOI: 10.1007/s00190-019-01236-y.
  • 47. Proszynski, W., and Lapinski, S. (2019). Reliability analysis for non-distorting connection of engineering survey networks. Surv. Rev., 51, 366, 219–224. DOI: 10.1080/00396265.2018.1425605.
  • 48. Proszynski, W., and Lapinski, S. (2021). Investigating support by minimal detectable displacement in confidence region determination and significance test of displacements. J. Geod., 95(10), 1–12. DOI: 10.1007/s00190-021-01550-4.
  • 49. Ray, J.D., Vijayan, M.S.M., Godah, W. et al. (2019). Investigation of background noise in the GNSS position time series using spectral analysis: A case study of Nepal Himalaya. Geod. Cartogr, 68(1), 375–388. DOI: 10.24425/gac.2019.128468.
  • 50. Sosnica, K., Bury, G., Zajdel, R. et al. (2021). General relativistic effects acting on the orbits of Galileo satellites. Celest. Mech. Dyn. Astron., 133, 14. DOI: 10.1007/s10569-021-10014-y.
  • 51. Sosnica, K., Bury, G., Zajdel, R. et al. (2022). GPS, GLONASS, and Galileo orbit geometry variations caused by general relativity focusing on Galileo in eccentric orbits. GPS Solut., 26, 5. DOI: 10.1007/s10291-021-01192-1.
  • 52. Tapley, B.D., Bettadpur, S.V., Watkins, M.M. et al. (2004). The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett., 31, 9. DOI: 10.1029/2004GL019920.
  • 53. Vincenty, T. (1975). Direct and inverse solutions on the ellipsoid with application of nested equations. Surv. Rev., 23(176), 88–93. DOI: 10.1179/sre.1975.23.176.88.
  • 54. Wisniewski, Z. (2009). Estimation of parameters in a split functional model of geodetic observations (Msplit¹qº estimation). J. Geod., 83, 105–120. DOI: 10.1007/s00190-008-0241-x.
  • 55. Wisniewski, Z. (2010). Msplit¹qº estimation: estimation of parameters in a multi split functional model of geodetic observations. J. Geod., 84, 355–372. DOI: 10.1007/s00190-010-0373-7.
  • 56. Wisniewski, Z., and Kaminski W. (2020). Estimation and prediction of vertical deformations of random surfaces, applying the total least squares collocation method. Sensors, 20(14), 1–24. DOI: 10.3390/s20143913.
  • 57. Wisniewski, Z., and Zienkiewicz, H. (2021a). Empirical analyses of robustness of the square Msplit estimation. J. Appl. Geod., 15 (1), 87–104. DOI: 10.1515/jag-2020-0009.
  • 58. Wisniewski, Z., and Zienkiewicz, M.H. (2021b). Estimators of covariance matrices in Msplit¹qº estimation. Surv. Rev., 53(378), 263–279. DOI: 10.1080/00396265.2020.1733817.
  • 59. Wisniewski, Z. (2022). Total Msplit estimation. J. Geod., 96 (10), 1–23. DOI: 10.1007/s00190-022-01668-z.
  • 60. Wyszkowska, P., and Duchnowski, R. (2019). Msplit estimation based on L1 norm condition. J. Surv. Eng., 145, 3. DOI: 10.1061/(ASCE)SU.1943-5428.0000286.
  • 61. Wyszkowska, P., and Duchnowski, R. (2022). Processing TLS heterogeneous data by applying robust Msplit estimation. Measurement, 197, 111298. DOI: 10.1016/j.measurement.2022.111298.
  • 62. Zienkiewicz, M. (2022). Identification of Unstable Reference Points and Estimation of Displacements Using Squared Msplit Estimation. Measurement, 195, 111029. DOI: 10.1016/j.measurement.2022.111029.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbb1e005-c343-4a9c-bfd7-aeeac1000b3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.