PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of RF power on physical properties of RF magnetron sputtered GaN/p-Si(1 0 0) thin film

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
GaN thin films were deposited on p-Si(1 0 0) substrates using RF magnetron sputtering at various RF powers. Influence of RF power on morphological, optical and structural properties of GaN thin films were investigated and presented in detail. XRD results proved that the films were polycrystalline in structure with (1 0 0) and (1 1 0) planes of hexagonal GaN. It was found that increasing RF power led to deterioration of crystal structure of the films due to increased decomposition of GaN. Stress in GaN thin films was calculated from XRD measurements and the reasons for this stress were discussed. Furthermore, it was analyzed and interpreted whether the experimental measurement results support each other. E2 (high) optical phonon mode of hexagonal GaN was obtained from the analysis of Raman results. UV-Vis spectroscopy results showed that optical band gap of the films varied by changing RF power. The reasons of this variation were discussed. AFM study of the surfaces of the GaN thin films showed that some of them were grown in Stranski-Krastanov mode and others were grown in Frank-Van der Merwe mode. AFM measurements revealed almost homogeneous, nanostructured, low-roughness surface of the GaN thin films. SEM analysis evidenced agglomerations in some regions of surface of the films and their possible causes have been discussed. It has been inferred that morphological, optical, structural properties of GaN thin film can be changed by controlling RF power, making them a potential candidate for LED, solar cell, diode applications.
Słowa kluczowe
Wydawca
Rocznik
Strony
454--464
Opis fizyczny
Bibliogr. 75 poz., tab., rys.
Twórcy
  • Department of Physics, Faculty of Art and Science, Mu¸s Alparslan University, Mu¸s, 49250, Turkey
  • Department of Physics, Faculty of Science, Atatürk University, Erzurum, 25250, Turkey
Bibliografia
  • [1] NEUMAYER D.A., EKERDT J.G., Chemistry of Materials, 8 (1996), 9.
  • [2] STRITE S., MORKOC H., J. Vac. Sci. Technol. B, B10 (1992), 1237.
  • [3] HU X.-L., WEN R.-L., QI Z.-Y., WANG H., Materials Science in Semiconductor Processing, 79 (2018), 61.
  • [4] MANTARCI A., KUNDAKÇI M., Bulletin of Materials Science, 42 (2019), 196.
  • [5] BRENDEL M., PERTZSCH E., ABROSIMOVA V., TRENKLER T., WEYERS M., in: M. KNEISSL, J. RASS (Eds.), III-Nitride Ultraviolet Emitters: Technology and Applications, Springer International Publishing, Cham, 2016, p. 219.
  • [6] KING S.W., DAVIS R.F., NEMANICH R.J., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 32 (2014), 061504.
  • [7] MANTARCI A., Emerg. Mater. Res., 8 (2019), 1.
  • [8] AJAY A., KOTSAR Y., MONROY E., in: J. HUANG, H.-C. KUO, S.-C. SHEN (Eds.) Nitride Semiconductor Light-Emitting Diodes (LEDs) (Second Edition),Woodhead Publishing, 2018, pp. 587.
  • [9] CHATTERJEE U., PARK J.-H., UM D.-Y., LEE C.-R., Renewable and Sustainable Energy Reviews, 79 (2017), 1002.
  • [10] PAMPILI P., PARBROOK P.J., Materials Science in Semiconductor Processing, 62 (2017), 180.
  • [11] MANTARCI A., KUNDAKÇI M., Opt. Quant. Electron.,51 (2019), 81.
  • [12] HE X.G., ZHAO D.G., JIANG D.S., ZHU J.J., CHEN P., LIU Z.S., LE L.C., YANG J., LI X.J., LIU J.P., ZHANG L.Q., YANG H., Journal of Alloys and Compounds, 662 (2016), 16.
  • [13] SAITO W., SUWA T., UCHIHARA T., NAKA T., KOBAYASHI T., Microelectronics Reliability, 55 (2015), 1682.
  • [14] MOON W.H., KIM H.J., CHOI C.H., Scripta Materialia, 56 (2007), 345.
  • [15] LEE J.-M., MIN B.-G., JU C.-W., AHN H.-K., LIM J.-W., Current Applied Physics, 17 (2017), 157.
  • [16] QIAN H., LEE K.B., VAJARGAH S.H., NOVIKOV S.V., GUINEY I., ZAIDI Z.H., JIANG S., WALLIS D.J., FOXON C.T., HUMPHREYS C.J., HOUSTON P.A., Journal of Crystal Growth, 459 (2017), 185.
  • [17] MIYOSHI M., TSUTSUMI T., KABATA T., MORI T., EGAWA T., Solid-State Electronics, 129 (2017), 29.
  • [18] SHEU J.-K., CHEN P.-C., SHIN C.-L., LEE M.-L., LIAO P.-H., LAI W.-C., Solar Energy Materials and Solar Cells, 157 (2016), 727.
  • [19] XING Z., WANG R.X., FAN Y.M., WANG J.F., ZHANG B.S., XU K., Materials Science in Semiconductor Processing, 57 (2017), 132.
  • [20] LIU Z., CHONG W.C., WONG K.M., LAU K.M., Microelectronic Engineering, 148 (2015), 98.
  • [21] LIN J.-H., HUANG S.-J., SU Y.-K., HUANG K.-W., Applied Surface Science, 354 (2015), 168.
  • [22] MANTARCI A., GÜNDÜZ B., Optical and Quantum Electronics, 48 (2016), 547.
  • [23] MARTINEZ-GUERRERO E., ADELMANN C., CHABUEL F., SIMON J., PELEKANOS N.T., MULA G., DAUDIN B., FEUILLET G., MARIETTE H., Applied Physics Letters, 77 (2000), 809.
  • [24] AMBACHER O., MAJEWSKI J., MISKYS C., LINK A., HERMANN M., EICKHOFF M., STUTZMANN M., BERNARDINI F., FIORENTINI V., TILAK V., SCHAFF B., EASTMAN L.F., Journal of Physics: Condensed Matter, 14 (2002), 3399.
  • [25] WANG M., BIAN J., SUN H., LIU W., ZHANG Y., LUO Y., Applied Surface Science, 389 (2016), 199.
  • [26] GU S., CHAGAROV E.A., MIN J., MADISETTI S., NOVAK S., OKTYABRSKY S., KERR A.J., KAUFMANOSBORN T., KUMMEL A.C., ASBECK P.M., Applied Surface Science, 317 (2014), 1022.
  • [27] MANTARCI A., KUNDAKÇI M., AIP Conference Proceedings, 1833 (2017), 020119.
  • [28] BRANISTE T., CIERS J., MONAICO E., MARTIN D., CARLIN J.F., URSAKI V.V., SERGENTU V.V., TIGINYANU I.M., GRANDJEAN N., Superlattices and Microstructures, 102 (2017), 221.
  • [29] MUTLU K., ASIM M., ERMAN E., Materials Research Express, 4 (2017), 016410.
  • [30] ERDO˘G AN E., KUNDAKÇI M., MANTARCI A., in: Journal of Physics: Conference Series, IOP Publishing, 2016, pp. 012019.
  • [31] FONG C.Y., NG S.S., YAM F.K., ABU HASSAN H., HASSAN Z., Vacuum, 119 (2015), 119.
  • [32] KAWWAM M., LEBBOU K., Applied Surface Science, 292 (2014), 906.
  • [33] YIN M.L., ZOU C.W., LI M., LIU C.S., GUO L.P., FU D.J., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262 (2007), 189.
  • [34] SHINODA H., MUTSUKURA N., Vacuum, 125 (2016), 133.
  • [35] LI L., HUANG J., YANG W., TANG K., REN B., XU H., WANG L., Surface and Coatings Technology, 307 (2016), 1024.
  • [36] ABUD S.H., SELMAN A.M., HASSAN Z., Superlattices and Microstructures, 97 (2016), 586.
  • [37] YUDATE S., FUJII T., SHIRAKATA S., Thin Solid Films, 517 (2008), 1453.
  • [38] LIUAN L., YONGGANG X., QINGPENG W., RYOSUKE N., YING J., JIN-PING A., Semiconductor Science and Technology, 30 (2015), 015019.
  • [39] SHINODA H., MUTSUKURA N., Thin Solid Films, 516 (2008), 2837.
  • [40] KUO D.-H., TUAN T.T.A., LI C.-C., YEN W.-C., Materials Science and Engineering: B, 193 (2015), 13.
  • [41] BISWAS A., BHATTACHARYYA D., SAHOO N.K., YADAV B.S., MAJOR S.S., SRINIVASA R.S., Journal of Applied Physics, 103 (2008), 083541.
  • [42] SELMAN A.M., HASSAN Z., HUSHAM M., Measurement, 56 (2014), 155.
  • [43] SCHULZ H., THIEMANN K.H., Solid State Communications, 23 (1977), 815.
  • [44] YEH C.-Y., LU Z.W., FROYEN S., ZUNGER A., Physical Review B, 46 (1992), 10086.
  • [45] ORAK I., KOCYIGIT A., TURUT A., Journal of Alloys and Compounds, 691 (2017), 873.
  • [46] PATTERSON A.L., Physical Review, 56 (1939), 978.
  • [47] HUGHES W.C., JR. W.H.R., JOHNSON M.A.L., FUJITA S., JR. J.W.C., SCHETZINA J.F., REN J., EDMOND J.A., Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 13 (1995), 1571.
  • [48] Proceedings of the Royal Society of London. Series A, 88 (1913), 428.
  • [49] AGGARWAL N., KRISHNA S.T.C., GOSWAMI L., MISHRA M., GUPTA G., MAURYA K.K., SINGH S., DILAWAR N., KAUR M., Crystal Growth & Design, 15 (2015), 2144.
  • [50] LIU L., EDGAR J.H., Materials Science and Engineering: R: Reports, 37 (2002), 61.
  • [51] KISIELOWSKI C., KRÜGER J., RUVIMOV S., SUSKI T., AGER J.W., JONES E., LILIENTALWEBER Z., RUBIN M., WEBER E.R., BREMSER M.D., DAVIS R.F., Physical Review B, 54 (1996), 17745.
  • [52] KOZAWA T., KACHI T., KANO H., NAGASE H., KOIDE N., MANABE K., Journal of Applied Physics, 77 (1995), 4389.
  • [53] VAN DE WALLE C.G., Physical Review B, 68 (2003), 165209.
  • [54] KAUFMANN N.A., LAHOURCADE L., HOURAHINE B., MARTIN D., GRANDJEAN N.,Journal of Crystal Growth, 433 (2016), 36.
  • [55] KIM H.W., KIM N.H., Applied Surface Science, 236 (2004), 192.
  • [56] DEMIR M., YARAR Z., OZDEMIR M., Solid State Communications, 158 (2013), 29.
  • [57] LI J.-S., TANG Y., LI Z.-T., DING X.-R., LI Z., Applied Surface Science, 410 (2017), 60.
  • [58] YANG D., WANG L., HAO Z.-B., LUO Y., SUN C.,HAN Y., XIONG B., WANG J., LI H., Superlattices and Microstructures, 99 (2016), 221.
  • [59] ZHANG Y., KAPPERS M.J., ZHU D., OEHLER F., GAO F., HUMPHREYS C.J., Solar Energy Materials and Solar Cells, 117 (2013), 279.
  • [60] KUDRAWIEC R., NYK M., SYPEREK M., PODHORODECKI A., MISIEWICZ J., STREK W., Applied Physics Letters, 88 (2006), 181916.
  • [61] YOU Y.-S., FENG S.-W., WANG H.-C., SONG J., HAN J., Journal of Luminescence, 182 (2017), 196.
  • [62] TAUC J., MENTH A., Journal of Non-Crystalline Solids, 8 (1972), 569.
  • [63] STENZEL O., The physics of thin film optical spectra, Springer, 2005.
  • [64] RESHCHIKOV M.A., USIKOV A., HELAVA H., MAKAROV Y., PROZHEEVA V., MAKKONEN I., TUOMISTO F., LEACH J.H., UDWARY K., Scientific Reports, 7 (2017), 9297.
  • [65] SAID A., DEBBICHI M., SAID M., Optik-International Journal for Light and Electron Optics, 127 (2016), 9212.
  • [66] GUEDDIM A., ELOUD T., MESSIKINE N., BOUARISSAN., Superlattices and Microstructures, 77 (2015), 124.
  • [67] LIAO J.-H., HUANG H.-W., CHENG L.-C., LIU H.-H., CHYI J.-I., CAI D.-P., CHEN C.-C., LAI K.-Y., Solar Energy Materials and Solar Cells, 132 (2015), 544.
  • [68] ZHANG H., ZHANG D., WANG W., Journal of Luminescence, 192 (2017), 470.
  • [69] HIROSHI H., Journal of Physics: Condensed Matter, 14 (2002), R967.
  • [70] SEKINE T., KOMATSU Y., IWAYA R., KUROE H., KIKUCHI A., KISHINO K., Journal of the Physical Society of Japan, 86 (2017), 074602.
  • [71] DYSON A., Journal of physics. Condensed matter: an Institute of Physics journal, 21 (2009), 174204.
  • [72] NOOTZ G., SCHULTE A., CHERNYAK L., OSINSKY A., JASINSKI J., BENAMARA M., LILIENTALWEBER Z., Applied Physics Letters, 80 (2002), 1355.
  • [73] PARK B.-G., SARAVANA KUMAR R., MOON M.-L., KIM M.-D., KANG T.-W., YANG W.-C., KIM S.-G., Journal of Crystal Growth, 425 (2015), 149.
  • [74] MIZUSHIMA I., TANG P.T., HANSEN H.N., SOMERS M.A.J., Electrochimica Acta, 51 (2006), 6128.
  • [75] MOON M.W., CHUNG J.W., LEE K.R., OH K.H., WANG R., EVANS A.G., Acta Materialia, 50 (2002), 1219.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbabc01c-f402-41f8-b80b-351134f690a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.