PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water vapor induced airborne rotational features

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to study the rotational features induced by evaporating water several laboratory experiments were conducted with airborne rotary detection discs made of absorbent cotton wool and ultralight polyurethane foam discs. Measurements indicated that water vapor develops and transits into the air an upwardly directed counterclockwise rotary motion in the Northern Hemisphere, and a clockwise motion in the Southern Hemisphere. Additionally, measurements of the thermal structure of the air/water interface indicated that evaporating water may gather rotational momentum in the warmer subsurface layer. The conducted observations suggest that the process of water evaporation may be based on the grouping of some coherently spiraling molecules in the liquid phase. The interacting molecules combine their partial rotational momentums, thus allowing the top molecule to transit via the surface tension microlayer and become airborne. At the moment of evaporation, the gathered rotational energy is taken over by the free bi-hydrogen rotor-arm of the evaporating molecule that starts to revolve. Next, the water vapor-induced rotational share of the kinetic energy is likely to be redistributed among other gaseous molecules and transferred into heat (during condensation) that further energizes the airborne convective loops. In order to confirm the rotary effects induced by water vapor, several field experiments were conducted with airborne rotary detection ribbons in the Northern Hemisphere. The observations confirmed that a more enhanced counterclockwise spiraling motion of air is found with air currents under atmospheric lows of a higher relative humidity, while weaker and clockwise directed rotary dominates under atmospheric highs.
Twórcy
autor
  • University of Szczecin, Faculty of Geosciences, Physical Oceanography Unit, Mickiewicza 16, 70-383 Szczecin, Poland
Bibliografia
  • DeCosmo J., Katsaros K.B, Smith S.D, Anderson R.J., Oost W.A., Bumke K., Chadwick H., 1996, Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results, Journal of Geophysical Research, 101 (C5), 12001-12016, DOI: 10.1029/95JC03796.
  • Deese W.C., 2008, UXL Encyclopedia of Science, available at https://www.encyclopedia.com
  • Finney J.L., 2001, The water molecule and its interactions: the interaction between theory, modelling, and experiment, Journal of Molecular Liquids, 90 (1-3), 303-312, DOI: 10.1016/S0167-7322(01)00134-9.
  • Garbalewski C., Marks R., 1987, Latitudinal characteristics of aerosol distribution in the near surface air over the Atlantic. Acta Geophysica Polonica, 35 (1), 77-86.
  • Holman J., Stone P., 2001, Chemistry, Nelson Thornes, 314 pp.
  • IPCC, 2014, Climate change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, The Core Writing Team, R.K. Pachauri, L.A. Meyer (eds.), IPCC, Geneva, Switzerland, 151 pp.
  • Kolendowicz L., Taszarek M., Czernecki B., 2016, Convective and non-convective wind gusts in Poland, 2001-2015, Meteorology Hydrology and Water Management, 4 (2), 15-21, DOI: 10.26491/mhwm/63636.
  • Kraus E.B., 1972, Atmosphere-ocean interaction, Oxford University Press (Clarendon), 275 pp.
  • Lerner R.G., Trigg G.L., 1991, Encyclopedia of Physics, 2nd edition, VHC publishers, 1408 pp.
  • Marks R., 1985, Attempt of regarding the effect of wind gustiness of the sea dynamic roughness as a factor of mass exchange through air-sea interface, Polish Polar Research, 6 (4), 459-474.
  • Marks R., 2014, Bubble rotational features -preliminary investigations, Journal of Oceanography and Marine Research, 2 (4), DOI: 10.4172/2332-2632.1000128.
  • Miessler G.L., Tarr D.A., 2003, Inorganic chemistry, 3rd edition, Prentice Hall, 720 pp.
  • Persson A., 1998, How do we understand the Coriolis Force, Bulletin of the American Meteorological Society 79 (7), 1373-1385, DOI: 10.1175/1520-0477(1998)0792.0.CO;2.
  • Pidwirny M., 2011, Evaporation, [in:] Encyclopedia of Earth, J. Cutler (ed.), available at http://editors.eol.org/eoearth/wiki/Evaporation (data access 05.03.2019).
  • Silberberg M.S., 2006, Chemistry. The molecular nature of matter and change, 4th edition, McGraw-Hill, 1088 pp.
  • Smith S.D., Katsaros K.B., Oost W.A., Mestayer P.G., 1996, The impact of the Hexos programme, Boundary-Layer Meteorology, 78 (1-2), 121-141, DOI: 10.1007/BF00122489.
  • Sobkowski J., 1981, Chemia jądrowa, PWN, Warszawa, 251 pp.
  • Storch H., Bray D., 2017, Models manifestation and attribution of climate change, Meteorology Hydrology and Water Management, 5 (1), 47-52, DOI: 10.26491/mhwm/67388.
  • Szwejkowski Z., Dragańska E., Cymes I., Timofte C.M., Suchecki S., Craciun I., 2017, Rainfall and water conditions in the region of the upper glacial in Europe, Meteorology Hydrology and Water Management, 5 (1), 15-28, DOI: 10.26491/mhwm/65538.
  • Woś A., 2000, Meteorologia dla geografów, Wydawnictwo Naukowe PWN, Warszawa, 313 pp.
  • Yu L., 2007, Global variations in oceanic evaporation (1958-2005): The role of the changing wind speed, Journal of Climate, 20 (21), 5376-5390, DOI: 10.1175/2007JCLI1714.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cba90109-4c75-4b01-aef0-17c61fc0f360
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.