Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Analiza termograwimetryczna kompozytu wzmocnionego włóknem szklanym dla zrozumienia wpływu tlenku miedzi na cząstki wypełniacza tlenku tytanu
Języki publikacji
Abstrakty
In this work, the composite samples required to investigate their thermal properties were fabricated employing the conventional hand lay-up technique, followed by a light compression molding process. A fixed weight of plain woven glass fiber and epoxy with four different types of fillers as calcium carbonate (CaCO3), aluminum oxide (Al2O3), magnesium oxide (MgO) and titanium oxide (TiO2) or copper oxide (CuO) of different weights (5, 10 and 15 g) were studied. According to thermal gravimetric analysis (TGA), it was observed that the melting point (Tm) and glass-transition temperature (Tg) are affected by the presence of CuO and TiO2, which indicate the degree of composite crystallinity established by the stronger interfacial interaction by the CuO than that of the TiO2 particles and the amorphous region of the chain. These studies were supported by examination of the surface morphology of the composites by means of scanning electron microscopy (SEM).
Czasopismo
Rocznik
Tom
Strony
12--21
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Dhaka University of Engineering and Technology, Department of Mechanical Engineering, Gazipur-1707, Bangladesh
- Dhaka University of Engineering and Technology, Department of Mechanical Engineering, Gazipur-1707, Bangladesh
Bibliografia
- [1] Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(ε-caprolactone) diblock copolymer: effect of curing agents on nanostructures, Polymer 2006, 47(21), 7590-7600.
- [2] Zhang D., Jia D., Toughness and strength improvement of diglycidyl ether of bisphenol-A by low viscosity liquid hyperbranched epoxy resin, J. Appl. Polym. Sci. 2006, 101(4), 2504-2511.
- [3] Cabanelas J.C., Serrano B., Baselga J., Development of cocontinuous morphologies in initially heterogeneous thermosets blended with poly (methyl methacrylate), Macromolecules 2005, 38(3), 961-970.
- [4] Francis B., Thomas S., Jose J., Ramaswamy R., Rao V.L., Hydroxyl terminated poly(ether ether ketone) with pendent methyl group toughened epoxy resin: miscibility, morphology and mechanical properties, Polymer 2005, 46(26),12372-12385.
- [5] Pickering S.J., Recycling technologies for thermoset composite materials – current status, Composite A 2006, 37(8),1206-1215.
- [6] Kim D.O., Keum S.W., Lee J.H., Lee J.H., Nam J.-D., Thermally expandable elastomer molding process for thermoset composite materials, Composite A 2006, 37(11), 2121-2127.
- [7] Boyard N., Serre C., Vayer M., A physical approach to define a class A surface in polymer thermosetting composite materials, J. Appl. Polym. Sci. 2007, 103(1), 451-461.
- [8] May C.A., Tanaka G.Y., Epoxy Resin Chemistry and Technology, Marcel Dekker, New York 1973.
- [9] Baur R.S., Epoxy Resin Chemistry, Advances in Chemistry, vol. 114, American Chemical Society, Washington (DC) 1979.
- [10] Potter W.G., Epoxide Resins, Springer, New York 1970.
- [11] Maloth B., Srinivasulu N.V., Rajendra R., Influence of titanium oxide fillers on the tensile and flexural properties of E-glass fabric/epoxy composites, Materials Today: Proceedings 2020, 23 January.
- [12] Hough J.A., Karad S.K., Jones F.R., The effect of thermal spiking on moisture absorption, mechanical and viscoelastic properties of carbon fibre reinforced epoxy laminates, Compos. Sci. Technol. 2005, 65(7-8), 1299-1305.
- [13] Pereira A.B., de Morais A.B., Marques A.T., de Castro P.T., Mode II interlaminar fracture of carbon/epoxy multidirectional laminates, Compos. Sci. Technol. 2004, 64(10-11),1653-1659.
- [14] Kchaou A., Turki C., Salvia M., Fakhfakh Z., Tréheux D., Role of fibre-matrix interface and fibre direction on dielectric behaviour of epoxy composites, Compos. Sci. Technol. 2004, 64(10-11), 1467-1475.
- [15] Tercjak A., Serrano E., Remiro P.M., Mondragon I., Viscoelastic behavior of thermosetting epoxy mixtures modified with syndiotactic polystyrene during network formation, J. Appl. Polym. Sci. 2006, 100(3), 2348-2355.
- [16] Salmon N., Carlier V., Schut J., Remiro P.M., Mondragon I., Curing behaviour of syndiotactic polystyrene-epoxy blends, 1. Kinetics of curing and phase separation process, Polym. Int. 2005, 54(4), 667-672.
- [17] Francis B., Ramaswamy R., Rao V.L., Jose S., Thomas S., Raju K.V.S.N., Morphology, viscoelastic properties, and mechanical behavior of epoxy resin modified with hydroxyl-terminated poly(ether ether ketone) oligomer with pendent tert-butyl groups, Polym. Eng. Sci. 2005, 45(12), 1645-1654.
- [18] Ferreira J.M., Errajhi O.A.Z., Richardson M.O.W., Thermogravimetric analysis of aluminized E-glass fiber reinforced unsaturated polyester composites, Polymer Test. 2006, 25, 1091-1094.
- [19] Hammed N., Sreekumar P.A., Francis B. et al., Morphology, dynamic mechanical and thermal studies on poly (styrene- Co-acrylonitrile) modified epoxy resin/glass fibre composites, Composites Part A: Appl. Sci. Manuf. 2007, 38, 2422-2432.
- [20] Yusri H.M., Sahrim A., Mechanical and thermal properties of glass fiber-reinforced epoxy composite with matrix modification using liquid epoxidized natural rubber, J. Reinfor. Plast. Compos. 2013, 32(9), 612-618.
- [21] Deep N., Mishra P., Evaluation of mechanical properties of functionalized carbon nanotube reinforced PMMA polimer nanocomposite, Karbala Int. J. Modern Sci. 2018, 4, 207-215.
- [22] Yang H.H., [In:] Bunsell A.R., editor, Fiber Reinforcement of Composite Materials, Elsevier, Amsterdam 1988, 246-329.
- [23] Young R.J., Lu D., Day R.J., Knoff W.F., Davis H.A., Relationship between structure and mechanical properties for aramid fibers, J. Mater. Sci. 1992, 27, 5431-5440, DOI: 10.1007/BF00541602.
- [24] Chinnasamy V., Subramani S.P., Palaniappan S.K., Mylsamy B., Aruchamy K., Characterization on thermal properties of glass fiber and kevlar fiber with modified epoxy hybrid composites, J. Mater. Res. Technol. 2020, 9(3), 3158-3167, DOI: 10.1016/j.jmrt.2020.01.061.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cba4108a-a7ed-4957-98a7-3db049d8a3fe