PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial distribution and risk assessment of heavy metals in bottom sediments of two small dam reservoirs (south-east Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozkład przestrzenny i ocena ryzyka metali ciężkich w osadach dennych dwóch małych zbiorników zaporowych (południowo-wschodnia Polska)
Języki publikacji
EN
Abstrakty
EN
Sediments of two dam reservoirs in SE Poland, Zalew Zemborzycki (ZZ) and Brody Iłżeckie (BI) were studied. The sediments from both reservoirs were sampled in the transects perpendicular to the shoreline, at the river inflow and the frontal dam. The total concentration of Mn, Zn, Pb, Cd, Cu, Cr and Ni was determined by ICP-EAS method after the sample digestion in the mixture of concentrated HNO3 and HClO4 acids. The statistical analyses: value intervals, mean values, variation coefficient, the median and the skewed distribution were performed. To estimate differences between the means for transects, Tukey’s test was applied with least significant difference (LSD) determination. The maps of the metal spatial distribution were drawn and sediment quality according to the geochemical and ecotoxicological criteria evaluated. Differences between the reservoirs in terms of heavy metals concentration in bottom sediments, and regularities in their spatial distribution were found. In the ZZ sediments the concentration was at the level of geochemical background (Zn, Cr), slightly (Cd, Cu, Ni) or moderately (Pb) contaminated sediments. The metal concentration in the sediments of the BI was up to eight times higher as compared to the ZZ. Moreover, sediments from the BI reservoir showed a greater variability of metal concentration than those from ZZ, which resulted from the dredging operation performed in the part of the reservoir. Metal concentration in sediments of the dredged part was ca. 2–5 times lower than in the undredged one, which indicates that after the dredging operation, accumulation of these metals was slight. The concentrations of Zn, Pb and Cd from the undredged part of BI were at the level of contaminated sediments and exceeded the probable effects level (PEL). In the ZZ, the greatest accumulation of metals occurred in the upper part of the reservoir and at the frontal dam, and the lowest in the middle part of the reservoir. In BI, the lower outflow of water in this reservoir caused a lower metal concentration in the sediments at the frontal dam, as compared with the other sediments in the undredged part of the reservoir. The results indicate that in small and shallow reservoirs, areas of accumulation of heavy metals depend on such factors as a parent river current, reservoir depth, water waving, reservoir shape (narrowing, coves/bays), and type of water outflow.
PL
Badano osady dwóch zbiorników zaporowych w SE Polsce - Zalewu Zemborzyckiego (ZZ) i zbiornika Brody Iłżeckie (BI). W obydwu zbiornikach osady pobrano w transektach prostopadłych do linii brzegowej, w dopływie rzeki oraz przy zaporze czołowej. Oznaczono całkowitą zawartość Mn, Zn, Pb, Cd, Cu, Cr i Ni metodą ICP-EAS po zmineralizowaniu próbki w mieszaninie stężonego kwasu HNO3 i HClO4. Przeprowadzono analizę statystyczną wyników: zakresy, wartości średnie, współczynnik zmienności, mediana, skośność rozkładu. Do oceny różnic między średnimi dla transektów zastosowano test Tukey’a z wyznaczeniem najmniejszej istotnej różnicy (NIR). Opracowano mapy rozkładu przestrzennego metali oraz oceniono jakość osadów wg kryterium geochemicznego i ekotoksykologicznego. Stwierdzono różnice między zbiornikami pod względem zawartości metali ciężkich i ich rozmieszczenia przestrzennego w osadach. W osadach ZZ zawartość metali kształtowała się na poziomie tła geochemicznego (Zn, Cr), osadów słabo (Cd, Cu, Ni) lub miernie zanieczyszczonych (Pb). Zawartość metali w osadach BI była do ośmiu razy większa w porównaniu z osadami ZZ. Ponadto, osady zbiornika BI wykazały większą zmienność zawartości metali niż osady ZZ, co wynikało z zabiegu bagrowania, przeprowadzonego w jego części. Zawartość metali w osadach części bagrowanej była ok. 2–5 razy mniejsza niż w niebagrowanej, co wskazuje, że po zabiegu bagrowania ich akumulacja była niewielka. Zawartości Zn, Pb i Cd w części niebagrowanej BI były na poziomie osadów zanieczyszczonych i przekroczyły wartości PEL (ang. probable effects level). W ZZ największa akumulacja metali w osadach wystąpiła w górnej części zbiornika oraz przy zaporze czołowej, a najmniejsza w jego środkowej części. W BI dolny odpływ wody ze zbiornika spowodował zmniejszenie zawartości metali w osadach przy zaporze czołowej w porównaniu z innymi osadami części niebagrowanej. Wyniki badań wskazują, że w małych i płytkich zbiornikach zaporowych akumulacja metali ciężkich zależy od czynników takich jak: pierwotny nurt rzeki, głębokość zbiornika, falowanie wody, kształt zbiornika (przewężenia, zatoczki/zatoki), a także od typu odpływu wody.
Rocznik
Strony
67--80
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • University of Life Sciences in Lublin, Poland Institute of Soil Science, Environment Engineering and Management
autor
  • University of Life Sciences in Lublin, Poland Institute of Soil Science, Environment Engineering and Management
  • University of Life Sciences in Lublin, Poland Institute of Soil Science, Environment Engineering and Management
autor
  • University of Life Sciences in Lublin, Poland Institute of Soil Science, Environment Engineering and Management
autor
  • University of Life Sciences in Lublin, Poland Institute of Soil Science, Environment Engineering and Management
autor
  • University of Life Sciences in Lublin, Poland Department of Environmental Engineering and Geodesy
  • Lublin University of Technology, Poland Faculty of Environmental Engineering
Bibliografia
  • [1] Akhurst, D.J., Clark, M.W., Reichelt-Brushett, J. & Jones, G.B. (2012). Elemental speciation and distribution in sediments of a eutrophied subtropical freshwater reservoir using postextraction normalization, Water Air and Soil Pollution, 223, pp. 4589–4604.
  • [2] Aleksander-Kwaterczuk, U. & Helios-Rybicka, E. (2009). Contaminated sediments as a potential source of Zn, Pb, and Cd for a river system in the historical metalliferous ore mining and smelting industry area of South Poland, Journal of Soils and Sediments, 9, pp. 13–22.
  • [3] Arnason, J.G. & Fletcher, B.A. (2003). A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA, Environmental Pollution, 123, pp. 383–391.
  • [4] Bojakowska, I. & Gliwicz, T. (2005). Chlorinated pesticides and polychlorinated biphenyls in river sediments of Poland, Przegląd Geologiczny, 53, pp. 649–655. (in Polish)
  • [5] Bojakowska, I. & Sokołowska, G. (1998). Geochemical classes of water sediments quality, Przegląd Geologiczny, 46, pp. 49–54. (in Polish)
  • [6] Campbell, J.A., Whitelaw, K., Riley, J.P., Head, P.C. & Jones, P.D. (1988). Contrasting behaviour of dissolved and particulate nickel and zinc in a polluted estuary, Science of the Total Environment, 71, pp. 141–155.
  • [7] Çevik, F., Göksu, M.Z.L., Derici, O.B. & Findik, Ö. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses, Evironmental Monitoring and Assessment, 152, pp. 309–317.
  • [8] Ciszewski, D., Kubsik, U. & Aleksander-Kwaterczuk, U. (2012). Long-term dispersal of heavy metals in a catchment affected by historic lead and zinc mining, Journal of Soils and Sediments, 12, pp. 1445–1462.
  • [9] Dang, T.C. & Jeffrey, P.O. (2006). Metal speciation in coastal marine from Singapore using a modified BCR sequential extraction procedure, Applied Geochemistry, 21, pp. 1335–1346.
  • [10] Darmody, R.G. & Marlin, J.C. (2002). Sediments and sediment-derived soils in Illinois: pedological and agronomic assessment, Environmental Monitoring and Assessment, 77, pp. 209–227.
  • [11] Demirak, A., Yilmaz, F., Tuna, A.L., Tuna, A.L. & Ozdemir, N. (2006). Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey, Chemosphere, 63, pp. 1451–1458.
  • [12] Dmitruk, U., Jancewicz, A. & Tomczuk, U. (2013). Hazardous organic and trace element occurrence in bottom sediments of dam reservoirs, Ochrona Środowiska, 3, pp. 63–68. (in Polish)
  • [13] Findik, Ö. & Turan, M.A. (2012). Metal concentrations in surface sediments of Beyler reservoir (Turkey), Bulletin of Environmental Contamination and Toxicology, 88, pp. 193–197.
  • [14] Gierszewski, P. (2008). Concentration of heavy metals in sediments of Włocławski reservoir as an index for hydrodynamic conditions of deposition, Landform Analyses, 9, pp. 79–82. (in Polish)
  • [15] Hu, B., Li, G., Li, J., Bi, J., Zhao, J. & Bu, R. (2013). Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China, Environmental Science and Pollution Research, 20, pp. 4099–4110.
  • [16] Huang, J., Ge, X. & Wang, D. (2012). Distribution of heavy metals in water column, suspended particulate matters and the sediment under hydrodynamic conditions using an annular flume, Journal of Environmental Sciences, 24, pp. 2051–2059.
  • [17] Ibragimow, A., Walna, B. & Siepak, M. (2013). Physico-chemical parameters determining the variability of actually and potentially available fractions of heavy metals in fluvial sediments of the middle Odra river, Archives of Environmental Protection, 39, 2, pp. 3–16.
  • [18] Jabłońska, M., Kostecki, M., Szopa, S., Łyko, A. & Michalski, R. (2012). Speciation of inorganic arsenic and chromium forms in selected water reservoirs of Upper Silesia, Ochrona Środowiska, 3, pp. 25–32. (in Polish)
  • [19] Jabłońska-Czapla, M., Szopa, S., Grygoyć, K., Łyko, A. & Michalski, R. (2014). Development and validation of HPLC-ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study, Talanta, 120, pp. 475–483.
  • [20] Jabłońska-Czapla, M., Szopa, S. & Rosik-Dulewska, Cz. (2014). Impact of mining dump on the accumulation and mobility of metals in the Bytomka river sediments, Archives of Environmental Protection, 40, 2, pp. 3–19.
  • [21] Kajak, Z. (1998). Hydrobiology-limnology, Ecosystems of inland waters, Wydawnictwo Naukowe PWN, Warszawa 1998. (in Polish)
  • [22] Kajak, Z., Kacprzak, K. & Polkowski, R. (1965). Tubular bottom sampler. Ekologia Polska, Ser B, 11, pp. 159–165. (in Polish)
  • [23] Karbassi, A.R., Torabi, F., Ghazban, F. & Ardestani, M. (2011). Association of trace metals with various sedimentary phases in dam reservoirs, International Journal of Environmental Science and Technology, 8, pp. 841–852.
  • [24] Korfali, S.I., Jurdi, M. & Davies, B.E. (2006). Variation of metals in bed sediments of Qaraaoun reservoir, Lebanon, Environmental Monitoring and Assessment, 115, pp. 307–319.
  • [25] Kostecki, M. (2007). Bioaccumulation of heavy metals in selected elements of trophic chain of anthropogenic reservoirs in the aspect of environmental protection and economical function, Institute of Environmental Engineering of the Polish Academy of Sciences, Works & Studies, 71, pp. 87. (in Polish)
  • [26] Kostecki, M. & Kowalski, E. (2007). Spatial arrangement of heavy metals in the dam-reservoir sediments in the conditions of anthropomixion, Archives of Environmental Protection, 3, pp. 67–81.
  • [27] Leńczowska-Baranek, J. (1996). The Łączany Weir as a geochemical barrier in the migration of heavy metals, Applied Geochemistry, 11, pp. 223–238.
  • [28] Li, F., Zhang, H., Meng, X., Chen, L. & Yin, D. (2012). Contamination by persistent toxic substances in surface sediment of urban rivers in Chaohu City, China, Journal of Environmental Sciences, 24, pp. 1934–1941.
  • [29] Ligęza, S. & Smal, H. (2002). Differentiation of pH and texture in bottom sediments of Zemborzycki dam reservoir, Acta Agrophysica, 70, pp. 235–245. (in Polish)
  • [30] Ligęza, S., Smal, H. & Bielińska, E.J. (2004). Total content of Cd, Cr, Pb, Zn and their horizontal differentiation in bottom sediments of dam reservoir “Zalew Zemborzycki” near Lublin, SE Poland, Chemia i Inżynieria Ekologiczna, 11, pp. 621–627.
  • [31] Loska, K. & Wiechuła, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik reservoir, Chemosphere, 51, pp. 723–733.
  • [32] MacDonald, D.D., Ingersoll, C.G. & Berger, T.A. (2000). Development and Evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Archives of Environmental Contamination and Toxicology, 39, pp. 20–31.
  • [33] Maciejczak, B. & Czerwik-Marcinkowska, J. (2010). Macrophytes, cyanobacteria and algae of the “Brodzkie Lake” in the Małopolska Upland – Southern Poland – preliminary study, Roczniki Akademii Rolniczej w Poznaniu, CCCLXXXIX, 14, pp. 67–76. (in Polish)
  • [34] Manasreh, W., Hailat, I. & El-Hasan, T.M. (2010). Heavy metal and anionic contamination in the water and sediments in Al-Mujib reservoir, central Jordan, Environmental Earth Sciences, 60, pp. 613–621.
  • [35] Marszałek, M. & Banasiuk, R. (2011). Water legal study for the special use of the Bystrzyca River water for the Zalew Zemborzycki reservoir in the range of water damming and retention, Warsaw 2011, pp. 1–103.
  • [36] Misztal, M. & Smal, H. (1980). Some chemical and physical properties submerged soils of the Zemborzyce dam reservoir, Soil Science Annual, 3, pp. 253–262.
  • [37] RZGW (Regional Water Management Authority in Warsaw). (http//www.warszawa.rzgw.gov.pl/lewe_menu-utrzymanie_wod_i_urzadzen_wodnych-wykaz_administrowanych-obiektowzbiornik_wodny_brody_ilzeckie.html (02.04.2014))
  • [38] Rosińska, A. & Dąbrowska, L. (2011). PCBs and heavy metals in water and bottom sediments of the Kozłowa Góra dam reservoir, Archives of Environmental Protection, 37, pp. 61–73.
  • [39] Salomons, W. & Förstner, U. (1984). Metals in the Hydrocycle, Springer-Verlag Berlin Heildelberg, New York, Tokyo 1984.
  • [40] Sarà, G. (2009). Variation of suspended and sedimentary organic matter with depth in shallow coastal waters, Wetlands, 29, pp. 1234–1242.
  • [41] Smal, H., Ligęza, S., Baran, S. & Wójcikowska-Kapusta, A. (2015). Quantity and quality of organic carbon in bottom sediments of two upland dam reservoirs in Poland, Environment Protection Engieneering, 41, pp. 95–110.
  • [42] Smal, H., Ligęza, S., Baran, S., Wójcikowska-Kapusta, A. & Obroślak, R. (2013). Nitrogen and phosphorus in bottom sediments of two small dam reservoirs, Polish Journal of Environmental Studies, 32, pp. 1479–1489.
  • [43] Smith, S.L., MacDonald, D.D., Keenleyside, K.A., Ingersoll, G.G. & Field, J. (1996). A preliminary evaluation of sediment quality assessment values for freshwater ecosystems, Journal of Great Lakes Research, 22, pp. 624–638.
  • [44] Sojka, M., Siepak, M. & Gnojska, E. (2013). Assessment of Heavy Metal Concentration i Bottom Sediments of Stare Miasto Pre-dam Reservoir on the Powa River, Annual Set The Environment Protection, 15, pp. 1916–1928. (in Polish)
  • [45] Thornton, J., Steel, A. & Rast, W. (1996). Chapter 8 – Reservoirs, in: Water quality assessments – a guide to use of biota, sediments and water in environmental monitoring (2nd Ed), Chapman D. (Ed.), Spon Press Taylor & Francis Group 1996.
  • [46] Wang, C., Liu, S., Zhao, Q., Deng, L. & Dong, S. (2012). Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River, Ecotoxicology and Environmental Safety, 82, pp. 32–39.
  • [47] Wang, G., A, Y., Jiang, H., Fu, Q. & Zheng, B. (2015). Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir, Journal of Hydrology, 520, pp. 37–51.
  • [48] Zhang, R., Zhang, F., Ding, Y., Gao, J., Chen, J. & Zhou, L. (2013). Historical trends in the anthropogenic heavy metal levels in the tidalflat sediments of Lianyungang, China, Journal of Environmental Sciences, 25, pp. 1458–1468.
  • [49] Zhao, Q., Liu, S., Deng, L., Dong, S. & Wang, C. (2013). Longitudinal distribution of heavy metals in sediments of a canyon reservoir in Southwest China due to dam construction, Environmental Monitoring and Assessment, 185, pp. 6101–6110.
  • [50] Zhu, X, Ji, H., Chen, Y., Ciao, M. & Tang, L. (2013). Assessment and sources of heavy metals in surface sediments of Miyun Reservoir, Beijing, Environmental Monitoring and Assessment, 185, pp. 6049–6062.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb98642d-3497-40a7-a684-8be8135c99f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.