PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical performance of ultra-high-performance strain-hardening cementitious composites according to binder composition and curing conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the mechanical properties and microstructures of three ultra-high-performance strain-hardening cementitious composites (UHP-SHCCs) with different mix proportions and curing conditions. The binders comprised ordinary Portland cement (OPC), silica fume, and ground granulated blast furnace slag (GGBS); the specimens were cured under air and wet curing conditions for 28 and 91 days, respectively. Compressive and direct tensile tests were performed, along with subsequent microstructural analyses using the particle packing theory and scanning electron microscopy, on the composite matrix and reinforcing polyethylene (PE) fibers. The test results indicate that the inclusion of GGBS, more than 50% (by weight of OPC), leads to a decrease in compressive and tensile strength by up to 35.7% but an increase in ductility by up to 55.9%. In addition, a higher content of GGBS resulted in larger deviations based on the curing conditions. The wet curing condition was more effective for the development of a higher energy absorption capacity than the air curing condition at a curing age of 28 d. By contrast, 91 d of wet curing resulted in the lowest strain energy in this study, mainly because of the considerably reduced strain capacity.
Rocznik
Strony
art. no. e63, 1--12.
Opis fizyczny
Bibliogr. 56 poz., il., tab., wykr.
Twórcy
autor
  • Department of Architectural Engineering, Hanyang University, Seoul, Republic of Korea
autor
  • Department of Architectural Engineering, Hanyang University, Seoul, Republic of Korea
autor
  • Department of Architectural Engineering, Hanyang University, Seoul, Republic of Korea
Bibliografia
  • 1. Rodrigues FA, Joekes I. Cement industry: sustainability, challenges and perspectives. Environ Chem Lett. 2011;9:151-166.
  • 2. Atiş CD, Özcan F, Kiliç A, Karahan O, Bilim C, Severcan MH. Influence of dry and wet curing conditions on compressive strength of silica fume concrete. Build Environ. 2005;40:1678-83.
  • 3. Akiiz F, Turker F, Koral S, Yiizer N. Effects of sodium sulfate concentration on the sulfate. Cem Concr Res. 1995;25:1360-88.
  • 4. Huang C, Feldman RF. Infuence of silica fume on the microstructural development in cement mortars. Cem Concr Res. 1985;15:285-294.
  • 5. Isaia GC, Gastaldini ALG, Moraes R. Physical and pozzolanic action of mineral additions on the mechanical strength of high performance concrete. Cem Concr Compos. 2003;25:69–76.
  • 6. Wang K, Konsta-Gdoutos MS, Shah SP. Hydration, rheology, and strength of ordinary portland cement (OPC)-cement kiln dust (CKD)-slag binders. ACI Mater J. 2002;99:173-79.
  • 7. Öner M, Erdogdu K, Günlü A. Effect of components fineness on strength of blast furnace slag cement. Cem Concr Res. 2003;33:463-9.
  • 8. Mazloom M, Ramezanianpour AA, Brooks JJ. Efect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos. 2004;26:347-357.
  • 9. Lankard DR. Slurry infltrated fber concrete (SIFCON): proper ties and applications. Mat Res Soc Symp. 1985;42:277-286.
  • 10. Li VC, Chan Y. Determination of interfacial debond mode for fiber-reinforced cementitious composites. J Eng Mech. 1994;120:707-719.
  • 11. Richard P, Cheyrezy M. Composition of reactive powder concretes. Cem Concr Res. 1995;25:1501-1511.
  • 12. Ranade R, Stults MD, Li VC, Rushing TS, Roth J, Heard WF. Development of high strength high ductility concrete. In: Proceedings of the 2nd International RILEM Conference on Strain Hardening Cementitious Composites. 2011. p. 1-8.
  • 13. Nguyễn HH, Choi JI, Kim HK, Lee BY. Mechanical properties and self-healing capacity of eco-friendly ultra-high ductile fiber-reinforced slag-based composites. Compos Struct. 2019;229:1-12.
  • 14. Yu KQ, Yu JT, Dai JG, Lu ZD, Shah SP. Development of ultra high performance engineered cementitious composites using polyethylene (PE) fibers. Constr Build Mater. 2018;158:217-27.
  • 15. Kim M-J, Chun B, Choi H-J, Shin W, Yoo D-Y. Efects of supplementary cementitious materials and curing condition on mechanical properties of ultra-high-performance, strain-hardening cementitious composites. Appl Sci. 2021;11:1-20.
  • 16. Kim M-J, Oh T, Yoo D-Y. Infuence of curing conditions on the mechanical performance of ultra-high-performance strain-hardening cementitious composites. Arch Civ Mech Eng. 2021;21:1-11.
  • 17. Kim M-J, Choi H-J, Shin W, Oh T, Yoo D. Development of impact resistant high-strength strain-hardening cementitious composites (HS-SHCC) superior to reactive powder concrete (RPC) under fexure. J Build Eng. 2021;44:102652.
  • 18. Li VC, Wu C, Wang S, Ogawa A, Saito T. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC). ACI Mater J. 2002;99:463-472.
  • 19. Ramezanianpour AA, Malhotra VM. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem Concr Compos. 1995;17:125-133.
  • 20. Hwang C-L, Lin C-Y. Strength development of blended blast furnace slag cement mortars. J Chin Inst Eng. 1986;9:233-239.
  • 21. Hooton RD, Emery JJ. Glass content determination and strength development predictions for vitrified blast furnace slag. ACI SP 79 Detroit. 1983;79:943-62.
  • 22. Mantel DG. Investigation into the hydraulic activity of five granulated blast furnace slags with eight different Portland cements. Mater J. 1994;1:471-77.
  • 23. Ranade R, Stults MD, Lee B, Li VC. Effects of fiber dispersion and flaw size distribution on the composite properties of PVA-ECC. High Perform Fiber Reinf Cem Composit. 2012;6:107-114.
  • 24. Li VC. Engineered cementitious composites (Ecc) - tailored composites through micromechanical modeling. Can Soc Civ Eng. 1997;1:1-38.
  • 25. Chen Y, Yu J, Leung CKY. Use of high strength strain-hardening cementitious composites for flexural repair of concrete structures with significant steel corrosion. Constr Build Mater. 2018;167:325-337.
  • 26. Tran H, Scott A, Dhakal R, Yang N. Mechanical and durability properties of a concrete using magnesium silicate hydrate binder system. 3rd International Congress on Durability of Concrete, Adelaide, Australia. 2017. p. 9-17.
  • 27. Zhang T, Vandeperre LJ, Cheeseman CR. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem Concr Res. 2014;65:8–14.
  • 28. JSCE. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC). Jpn Soc Civ Eng Tokyo Jpn. 2004;1:1-14.
  • 29. Chen Z, Yang Y, Yao Y. Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag. Mater Des. 2013;44:500-508.
  • 30. de Larrard F. Concrete mixture proportioning: a scientific approach. Boca Raton: CRC Press; 1999. 31. Ahmed Sbia L, Peyvandi A, Soroushian P, Balachandra AM, Sobolev K. Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles. Constr Build Mater. 2015;76:413-422.
  • 32. Bala M, Zentar R, Boustingorry P. Parameter determination of the compressible packing model (CPM) for concrete application. Powder Technol. 2020;367:56-66.
  • 33. Soliman N. Development of ultra-high-performance concrete (UHPC) using waste glass materials - towards innovative ecofriendly concrete. Dr Thesis, Département Génie Civil, Fac Génie, Univ Sherbrooke 2017.
  • 34. Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EMR. Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem Concr Compos. 2008;30:410-418.
  • 35. Sumanasooriya MS, Deo O, Neithalath N. Particle packing-based material design methodology for pervious concretes. ACI Mater J. 2012;109:205-214.
  • 36. Hermann A, Langaro EA, Silva SLD, Klein NS. Particle packing of cement and silica fume in pastes using an analytical model Empacotamento de partículas de cimento e sílica ativa Filler effect. Rev IBRACON Estrut Mater. 2016;9:48-56.
  • 37. Soliman NA, Tagnit-Hamou A. Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete. ACI Mater J. 2017;114:847-58.
  • 38. Peng Y, Ma K, Long G, Xie Y, Yu L, Xie Q. Effect of packing density according to CPM on the rheology of cement-fly ash-slag paste. J Mater Civ Eng. 2021;33:04021209.
  • 39. Chen Y, Matalkah F, Soroushian P, Weerasiri R, Balachandra A. Optimization of ultra-high performance concrete, quantification of characteristic features. Cogent Eng. 2019;6:1558696.
  • 40. Kwan AKH, Wong HHC. Packing density of cementitious materials: part 2-packing and fow of OPC + PFA + CSF. Mater Struct. 2008;41:773-784.
  • 41. Curosu I, Liebscher M, Mechtcherine V, Bellmann C, Michel S. Tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers. Cem Concr Res. 2017;98:71-81.
  • 42. Ranade R, Li VC, Stults MD, Heard WF, Rushing TS. Composite properties of high-strength, high-ductility concrete. ACI Mater J. 2013;110:413-422.
  • 43. Li VC, Wang S, Wu C. Tensile strain-hardening behavior or polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Mater J. 2001;98:483-492.
  • 44. Ranade R, Li VC, Stults MD, Rushing TS, Roth J, Heard WF. Micromechanics of high-strength, high-ductility concrete. ACI Mater J. 2019;110:375-384.
  • 45. Zhang J, Gong C, Guo Z, Zhang M. Cement and concrete research engineered cementitious composite with characteristic of low drying shrinkage. Cem Concr Res. 2009;39:303-312.
  • 46. Idiart A. Drying shrinkage and creep in concrete: a summary. J Vestib Res Equilib Orientat. 2006;20:43-84.
  • 47. Kim M-J, Oh T, Yoo D-Y. Influence of curing conditions on the mechanical performance of ultra-high-performance strain-hardening cementitious composites. Arch Civ Mech Eng. 2021 (accepted).
  • 48. Gallucci E, Zhang X, Scrivener KL. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cem Concr Res. 2013;53:185-195.
  • 49. Xie S, Cheng Z, Wan L. Hydration and microstructure of ASTM type I cement paste. IEEE J Sel Top Quantum Electron. 2019;26:215-220.
  • 50. Alsayed SH, Amjad MA. Effect of curing conditions on strength, porosity, absorptivity, and shrinkage of concrete in hot and dry climate. Cem Concr Res. 1994;24:1390-8.
  • 51. Li VC, Wang Y, Backer S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites. 1990;21:132-140.
  • 52. Yoo D-Y, Kim S. Comparative pullout behavior of half-hooked and commercial steel fibers embedded in UHPC under static and impact loads. Cem Concr Compos. 2019;97:89-106.
  • 53. Wille K, Kim DJ, Naaman AE. Strain-hardening UHP-FRC with low fiber contents. Mater Struct Constr. 2011;44:583-598.
  • 54. Yoo D-Y, Shin HO, Yang JM, Yoon YS. Material and bond proper ties of ultra high performance fber reinforced concrete with micro steel fibers. Compos Part B Eng. 2014;58:122-133.
  • 55. Li M, Li VC. Rheology, fiber dispersion, and robust properties of engineered cementitious composites. Mater Struct Constr. 2013;46:405-420.
  • 56. Lin Z, Li VC. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces. J Mech Phys Solids. 1997;45:763-787.
Uwagi
Korekta autorska: art. no. 73, DOI:10.1007/s43452-022-00394-9
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb98051e-836f-4226-9098-ee5148520baa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.