PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biological Soil Crusts, Plant Functional Groups, and Soil Parameters in Arid Areas of Iran

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biological soil crusts (BSCs) have a vital role regarding vegetation and soil development in arid and semi-arid areas in the world, and apparently in Iran, where they comprise more than 85% of the land. In this research, the relationship between BSCs and plant functional groups, considering soil parameters along an arid alluvial fan located in Khorasan Razavi province in northeastern Iran, was examined. The sampling carried out in summer, systematically from apex towards base part of alluvial fan, using a 0.25 m2 quadrat over a 5-cm thick soil surface. Surface levels were classified into three categories: apex, middle, and base. At each level, 16 samples were taken; in total 48 samples were collected along the alluvial fan from the apex point to the base district. The results showed a strong relationship between BSCs and the soil surface features, and a weak correlation between the plant functional group and soil parameters. BSCs indicated an ecological evolution from apex to the base geomorphic level by soil development; so that BSCs are more developed on the base of alluvial fan, but their diversity is reduced.
Rocznik
Strony
337--351
Opis fizyczny
Bibliogr. 56 poz., fot., mapa, tab., wykr.
Twórcy
  • Department of Desert and Arid Zones Management, Ferdowsi University of Mashhad, Mashhad, Iran
autor
  • Department of Desert and Arid Zones Management, Ferdowsi University of Mashhad, Mashhad, Iran
autor
  • Department of Rangelands and Watershed Management, Ferdowsi University of Mashhad, Mashhad, Iran
autor
  • Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
Bibliografia
  • [1] Belnap J., Gillette D. A. 1998 – Vulnerability of desert soil surfaces to wind erosion: impacts of soil texture and disturbance – J. Arid Environ.39: 133-142, https://doi.org/10.1006/jare.1998.0388.
  • [2] Belnap J., Kaltenecker J. H., Rosentreter R., Williams J., Leonard S., Eldridge D. J. 2001 – Biological Soil Crusts: Ecology and Management: TR–1730-2 – US Department of the Interior, Denver, CO.
  • [3] Belnap J., Lange O. L. 2003 – Biological soil crusts: characteristics and distribution (In: Biological Soil Crusts: Structure, Function, and Management) – SpringerVerlag Berlin, pp: 3-30, https://doi.org/10.1007/978-3-642-56475-8.
  • [4] Beymer R. J., Klopatek J. M. 1991 – Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands – Arid soil Res. Rehab.5: 187-98.
  • [5] Bisigato A. J., Villagra P. E., Ares J. O., Rossi B. E. 2009 – Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes – J. Arid Environ.73: 182-191, https://doi.org/10.1016/j.jaridenv.2008.09.001.
  • [6] Black C. A. 1965 – Methods of soil analysis: part I. Physical and mineralogical properties – American Society of Agronomy, Madison.
  • [7] Bouyoucos G. J. 1962 – Hydrometer method improved for making particle size analysis of soils – Agron. J.54: 464-465.
  • [8] Bowker M. A. 2007 – Biological soil crust rehabilitation in theory and practice: an underexploited opportunity – Restoration Ecology, 15: 13-23, https://doi.org/10.1111/j.1526-100X.2006.00185.x.
  • [9] Bowker M. A., Belnap J., Davidson D. W., Phillips S. L. 2005 – Evidence for micronutrient limitation of biological soil crusts: importance to arid-land restoration – Ecol. Appl.15: 1941-1951.
  • [10] Buxbaum C. A. Z., Vanderbilt K. 2007 – Soil heterogeneity and the distribution of desert and steppe plant species across a desert-grassland ecotone – J. Arid Environ.69: 617-632.
  • [11] Chamizo S., Canton Y., Lazaro R., Sole-Benet A., Domingo F. 2012 – Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems – Ecosystems, 15: 148-161, https://doi.org/10.1007/s10021-011-9499-6.
  • [12] Chen Y. N., Wang Q., Li W. H., Ruan X. 2007 – Microbiotic crusts and their interrelations with environmental factors in the Gurbantonggut desert, western China –Environ. Geol.52: 691-700, https://doi.org/10.1007/s00254-006-0505-9.
  • [13] Corenblit D., Baas A. C. W., Bornette G., Darrozes J., Delmotte S., Francis R. A., Gurnell A. M., Julien F., Naiman R. J., Steiger J. 2011 – Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings – Earth-Sci. Rev.106: 307-331.
  • [14] Cornellison J. H. C., Lange S. I., Soudzilovskia N. A., During H. J. 2007 – Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry – Ann. Bot.99: 987-1001.
  • [15] Dainin A., Ganor E. 1991 – Trapping of air-born dust by mosses in the Negev Desert Earth Surface process – Landforms, 16: 153-162, https://doi.org/10.1002/esp.3290160206.
  • [16] Dunkerly D. L., Brown K. J. 1995 – Runoff and run on areas in a patterned chenopod shrubland, arid western Base South Wales, Australia: characteristics and origin – J. Arid Environ.30: 41-55.
  • [17] Erwin D. H. 2008 – Macroevolution of ecosystem engineering, niche construction and diversity – Trends Ecol. Evol.23: 304-310.
  • [18] Gentry A. H. 1988 – Changes in plant community diversity and floristic composition on environment and geographical gradients – Ann. Mo. Bot. Gard.75: 1-34.
  • [19] Goudie A. 2002 – Great Warm Deserts of the World: Landscape and Evolution, 1st ed – Oxford University Press USA, Base York.
  • [20] Hawkes C. V. 2004 – Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought – Plant ecol.170: 121-134, https://doi.org/10.1023/B:VEGE.0000019035.56245.91.
  • [21] He M. Z., Zheng J. G., Li X. R., Qian Y. L. 2007 – Environmental factors affecting vegetation composition in the Alxa Plateau, China – J. Arid Environ.69: 473-489, https://doi.org/10.1016/j.jaridenv.2006.10.005.
  • [22] Hupy J. P. 004 – Influence of vegetation cover and crust type on wind-blown sediment in a semi-arid climate – J. Arid Environ.58: 167-179, https://doi.org/10.1016/s0140-1963(03)00129-0.
  • [23] Kleiner E. F., Harper K. T. 1977 – Soil properties in relation to cryptogamic ground-cover in Canyonlands National Park – J. Range Manage.30: 202-205.
  • [24] Laity J. J. 2006 – Deserts and desert environments – Wiley-Blackwell.
  • [25] Le Houerou H. N., Bingham R. L., Skerbek W. 1988 – Relationship between the variability of primary production and the variability of annual precipitation in world arid lands – J. Arid Environ.15: 1-18.
  • [26] Li C. L., Wang J. H., Sun K., Li A. D., Li D. L. 2006 – Community structure and species diversity in Liangucheng Nature Reserve of Minqin County – Acta Botanica Boreali Occidentalia Sinica, 26: 2338-2344.
  • [27] Li X. R., He M. Z., Zerbe S., Li X. J., Liu L. C. 2010 – Micro-geomorphology determines community structure of biological soil crusts at small scales – Earth Surf. Proces. Landf.35: 932-940.
  • [28] Li X. R., Jia X. H., Long L. Q., Zerbe S. 2005 – Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China) – Plant Soil, 277: 375-385, https://doi.org/10.1007/s11104-0058162-4.
  • [29] Li X. R., Wang X. P., Li T., Zhang J. G. 2002 – Microbiotic crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China – Biol. Fertil. Soils, 35: 147-154.
  • [30] Longton R. E. 1997 – The role of bryophytes and lichens in polar ecosystems (In: Ecology of arctic environments, Eds: S. J. Woodin, M. Marquiss) – Oxford, Blackwell Science, pp: 69-96.
  • [31] McAuliffe J. R. 1994 – Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert Bajadas – Ecol. Monogr.64111-148, https://doi.org/10.2307/2937038.
  • [32] Miralles I., Trasar-Cepeda C., Leiros M. C., Gil-Sotres F. 2012 – Labile carbon in biological soil crusts in the Tabernas desert, SE Spain – Soil Biol. Biochem.5: 1-8.
  • [33] Mollard F. P., Insausti P. 2009 – Soil moisture conditions affect the sensitivity of Bromus catharticus dormant seeds to light and the emergence pattern of seedlings – Seed Sci. Res.19: 81-89.
  • [34] Nelson D. W., Sommers L. E. 1982 – Total carbon, organic carbon and organic matter (In: Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, second edition, Eds: A. L. Page, R. H. Miller, D. R. Keeney) – American Society of Agronomy, Soil Science Society of America: Madison WI, pp: 539-577.
  • [35] Niu J., Yang K., Wang Y. 2017 – Relationships between Soil Crust Development and Soil Properties in the Desert Region of North China – Sustainability MDPI, 9: 710-725, https://doi.org/10.3390/su9050725.
  • [36] Phillips J. D. 2016 – Landforms as extended composite phenotypes – Earth Surf. Proces. Landf.41: 16-26.
  • [37] Phillips S. L., Belnap J. 1998 – Shifting carbon dynamics due to the effects of Bromus tectorum invasion on biological soil crusts – Ecological Bulletin, 79: 205.
  • [38] Pietrasiak N., Drenovsky R. E., Santiago, L. S., Graham R. C. 2014 – Biogeomorphology of a Mojave Desert landscape-Configurations and feedbacks of abiotic and biotic land surfaces during landform evolution – Geomorphology, 206: 23-36, https://doi.org/10.1016/j.geomorph.2013.09.015.
  • [39] Pietrasiak N., Johansen J. R., Drenovsky R. E. 2011 – Geologic composition influences distribution of microbiotic crusts in the Mojave and Colorado Deserts at the regional scale – Soil Biol. Biochem.43: 967-974.
  • [40] Pietrasiak N., Regus J. U., Johansen J. R., Lam D., Sachs J. L. 2013 – Biological soil crust community types differ in key ecological functions – Soil Biol. Biochem.65: 168-171, https://doi.org/10.1016/j.soilbio.2013.05.011.
  • [41] Rietkerk M., Koppel J.v.d. 2008 – Regular pattern formation in real ecosystems – Trends Ecol. Evol.23: 169-175.
  • [42] Rodríguez-Caballero E., Cantón Y., Chamizo S., Afana, A., Solé-Benet A. 2012 – Effects of biological soil crusts on surface roughness and implications for runoff and erosion – Geomorphology, 145: 81-89.
  • [43] Saco P., Willgoose G., Hancock G. 2007 – Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions – Hydrol. Earth Syst. Sci.11: 1717-1730, https://doi.org/10.5194/hess-11-1717-2007.
  • [44] Sedia E. G., Ehrenfeld J. G. 2003 – Lichens and mosses promote alternate stable plant communities in the Base Jersey Pinelands – Oikos, 100: 447-458.
  • [45] Seppelt R. D., Turk R., Green T. A., Moser G., Panbaseitz S., Sancho L. G., Schoreter B. 2010 – Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica – Antarct. Sci.2: 691-702.
  • [46] Shachak M., Lovett G. M. 1998 – Atmospheric deposition to a desert ecosystem and its implications for management – Ecol. Appl.8: 455-463.
  • [47] Sperry J. S., Hacke U. G. 2002 – Desert shrub water relations with respect to soil characteristics and plant functional type – J. Functional. Ecol.16: 367-378, https://doi.org/10.1046/j.1365-2435.2002.00628.x.
  • [48] Tongway D. J., Valentin C., Seghieri J. 2001 – Banded vegetation patterning in arid and semiarid environments: ecological processes and consequences for management – Springer, Base York, https://doi.org/10.1007/978-1-4613-0207-0.
  • [49] Virtanen R., Luoto M., Rama T., Mikkola K., Hjort J., Grytnes J. A., Birks H. J. B. 2010 – Recent vegetation changes at the high-latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity – Glob. Ecol. Biogeogr.19: 810-821, https://doi.org/10.1111/j.1466-8238.2010.00570.x.
  • [50] Wainwright J. 2009 – Desert ecogeomorphology (In: Geomorphology of Desert Environments, Eds: A. J. Parsons, A. D. Abrahams) 2nd edn – Springer Science and Business Media, Base York.
  • [51] Whitford W. 2002 – Ecology of Desert Systems – Academic Press: San Diego CA, 343 pp, https://doi.org/10.1644/1545-1542(2003)084<1122:EODS>2.0.CO;2.
  • [52] Williams A. J., Buck B. J., Soukup D. A., Merkler D. J. 2013 – Geomorphic controls on biological soil crust distribution: a conceptual model from the Mojave Desert (USA) – Geomorphology, 195: 99-109.
  • [53] Xu Y., Rossi F., Colica G., Deng S., De Philippis R., Chen, L. 2013 – Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas – Biol. Fertil. Soils, 49: 143-152.
  • [54] Yair A., Danin A. 1980 – Spatial variation as related to the soil moisture regime over an arid limestone hillside-northern Negev, Israel – Oecologia, 47: 83-88, https://doi.org/10.1007/BF00541779.
  • [55] Zhao H. L., Guo Y. R., Zhou R. L., Drake S. 2010 – Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China – Catena, 82: 70-76.
  • [56] Zuo X. A., Zhao X. Y., Zhao H. L., Zhang T. H., Guo Y. R., Li Y. Q., Huang Y. X. 2009 – Spatial heterogeneity of soil properties and vegetation-soil relationships following vegetation restoration of mobile dunes in Horqin Sandy Land, Northern China – Plant Soil, 318: 153-167.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb95a826-d5e3-42d9-bacf-18f19104ed4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.