PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of pipeline transportation systems for carbon dioxide sequestration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2) inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2 working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2 recovered (156.43 kg/s) and the monothanolamine absorption method for separating CO2 from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2 transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2 is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2 temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.
Rocznik
Strony
117--140
Opis fizyczny
Bibliogr. 19 poz., il.
Twórcy
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] American Petroleum Institute: Spec 5L-Specification for Line Pipe, 43rd Edn.Washington 2004.
  • [2] Aspen Plus, Version 7.0. Computer program, 2008.
  • [3] Beggs H.D., Brill J.P.: A Study of two-phase flow in inclined pipes. J. Petrol Technol., 25(1973), 607–617.
  • [4] Chmielniak T., Łukowicz H.: Condensing power plant cycle – assessing possibilities of improving its efficiency. Arch. Thermodyn. 31(2010), 3, 105–113.
  • [5] Farris C.B.: Unusual design factors for supercritical CO2 pipelines. Energy Progress 3(1983), 3, 150–158.
  • [6] Gottlicher Gerold: The Energetics of Carbon Dioxide Capture in Power Plants. VDI Verlag, Dusseldorf 1999.
  • [7] Incropera F.P., DeWitt D.P.: Introduction to heat transfer, 3rd Edn. John Wiley & Sons, Inc., New York 1996.
  • [8] Ludtke K.H.: Process Centrifugal Compressors. Springer, 2004.
  • [9] Łukowicz H., Dykas S., Rulik S., Stępczyńska K.: Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit. Arch. Thermodyn. 32(2011), 3, 231–244.
  • [10] McCoy S.T., Rubin E.S.: An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int. J. Greenhouse Gas Contr. 2(2008), 2, 219–229.
  • [11] Mohitpour M., Seevam P., Botros K.K., Rothwell B., Ennis C.: Pipeline Transportation of Carbon Dioxide Containing Impurities. ASME, New York 2012.
  • [12] Polish Committee for Standardization: Thermal Insulation of Ducts, Fittings and Installations, PN-B-02421, Jul. 2000.
  • [13] Transportation. Title 49 Code of Federal Regulations Pt. 195, 2005 Edn. 170–171.
  • [14] Rao B.: Multiphase Flow Models Range of Applicability. CTES, L.C, May 18, 1998.
  • [15] Wayne C., Edmister Byung Ik Lee: Applied Hydrocarbon Thermodynamics Vol. 1. Gulf Publishing Company, London Houston, London, Paris, Tokyo 1984.
  • [16] Witkowski A., Majkut M.: The impact of CO2 compression systems on the compressor power required for a pulverized coal power plant in post-combustion carbon sequestration. Arch. Mechanical Eng., LIX(2012), 3, 343–360.
  • [17] Witkowski A., Rusin A., Majkut M., Rulik S., Stolecka K.: Comprehensive Analysis of the Pipeline Transportation Systems for CO2 Sequestration. Thermodynamics and Safety Problems. In: Proc. 3rd Int. Conf. Contemporary Probl. Thermal Eng. CPOTE 2012, 18-20 September, 2012, Gliwice.
  • [18] Zhang Z.X., Wang G.X. Massarotto P., Rudolph V.: Optimization of pipeline transport for CO2 sequestration. Energ. Conver. Manage. 47(2006), 702–715.
  • [19] Zhang D., Wang Z., Sun J., Zhang L., Zheng L.: Economic Evaluation of CO2 pipeline transport in China. Energ. Conver. Manage. 55(2012), 127–135.
Uwagi
EN
The results presented in this paper were obtained from research work cofinanced by the National Centre of Research and Development in the framework of Contract SP/E/1/67484/10, Strategic Research Programme (Advanced Technologies for Energy Generation: Development of a Technology for Highly Efficient Zero-Emission Coal-Fired Power Units Integrated with CO2 Capture).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb94ab9f-0745-4720-8379-fae1a9de9d09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.